About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Nov 27, 2024
Download and review sample files that show how to run a Federated Learning experiment with Fully Homomorphic Encryption (FHE).
Homomorphic encryption
FHE is an advanced, optional method to provide additional security and privacy for your data by encrypting data sent between parties and the aggregator. This method still creates a computational result that is the same as if the computations were done on unencrypted data. For more details on applying homomorphic encryption in Federated Learning, see Applying encryption.
Download the Federated Learning sample files
Download the following notebooks.
Parent topic: Federated Learning tutorial and samples