Create the data handler
Each party in a Federated Learning experiment must get a data handler to process their data. You or a data scientist must create the data handler. A data handler is a Python class that loads and transforms data so that all data for the experiment
is in a consistent format.
About the data handler class
The data handler performs the following functions:
- Accesses the data that is required to train the model. For example, reads data from a CSV file into a Pandas data frame.
- Pre-processes the data so data is in a consistent format across all parties. Some example cases are as follows:
- The Date column might be stored as a time epoch or timestamp.
- The Country column might be encoded or abbreviated.
- The data handler ensures that the data formatting is in agreement.
- Optional: feature engineer as needed.
The following illustration shows how a data handler is used to process data and make it consumable by the experiment:
One party might have multiple tables in a relational database while another party uses a CSV file. After the data is processed with the data handler, they will have a unified format. For example, all data are put into a single table with previous data in separate tables joined together.
Data handler template
A general data handler template is as follows:
# your import statements
from ibmfl.data.data_handler import DataHandler
class MyDataHandler(DataHandler):
"""
Data handler for your dataset.
"""
def __init__(self, data_config=None):
super().__init__()
self.file_name = None
if data_config is not None:
# This can be any string field.
# For example, if your data set is in `csv` format,
# <your_data_file_type> can be "CSV", ".csv", "csv", "csv_file" and more.
if '<your_data_file_type>' in data_config:
self.file_name = data_config['<your_data_file_type>']
# extract other additional parameters from `info` if any.
# load and preprocess the training and testing data
self.load_and_preprocess_data()
"""
# Example:
# (self.x_train, self.y_train), (self.x_test, self.y_test) = self.load_dataset()
"""
def load_and_preprocess_data(self):
"""
Loads and pre-processeses local datasets,
and updates self.x_train, self.y_train, self.x_test, self.y_test.
# Example:
# return (self.x_train, self.y_train), (self.x_test, self.y_test)
"""
pass
def get_data(self):
"""
Gets the prepared training and testing data.
:return: ((x_train, y_train), (x_test, y_test)) # most build-in training modules expect data is returned in this format
:rtype: `tuple`
This function should be as brief as possible. Any pre-processing operations should be performed in a separate function and not inside get_data(), especially computationally expensive ones.
# Example:
# X, y = load_somedata()
# x_train, x_test, y_train, y_test = \
# train_test_split(X, y, test_size=TEST_SIZE, random_state=RANDOM_STATE)
# return (x_train, y_train), (x_test, y_test)
"""
pass
def preprocess(self, X, y):
pass
Parameters
your_data_file_type
: This can be any string field. For example, if your data set is incsv
format,your_data_file_type
can be "CSV", ".csv", "csv", "csv_file" and more.
Return a data generator defined by Keras or Tensorflow
The following is a code example that needs to be included as part of the get_data
function to return a data generator defined by Keras or Tensorflow:
train_gen = ImageDataGenerator(rotation_range=8,
width_sht_range=0.08,
shear_range=0.3,
height_shift_range=0.08,
zoom_range=0.08)
train_datagenerator = train_gen.flow(
x_train, y_train, batch_size=64)
return train_datagenerator
Data handler examples
Parent topic: Creating a Federated Learning experiment