About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Nov 21, 2024
You can use the following input and output data formats for Python Decision Optimization models.
Input data
For Python DOcplex models, the input data can read from a file in any format.
If you want to use external sources to populate your input data by using connectors, then you must
use
files for your input data..csv
You can use dictionaries to define your input data. You can use the
get_all_inputs
method to read files and return a dataframe dictionary.
from docplex.util.environment import get_environment import pandas from six import iteritems from collections.abc import Mapping from os.path import join, dirname, basename, splitext, exists import glob class _InputDict(dict): def __init__(self, directory, names): dict.__init__(self) self._directory = directory for k in names: dict.__setitem__(self, k, None) file='model_schema.json' if self._directory is not None: file = "{0}/".format(self._directory) + file self.dtype_schemas = self.get_dtype_schemas( file) def __getitem__(self, key): if isinstance(key, str): item = dict.__getitem__(self, key) if item is None: file = "{0}.csv".format(key) if file in self.dtype_schemas: return self.read_df( key, dtype=self.dtype_schemas[file]) else: return self.read_df( key) else: return item else: raise Exception("Accessing input dict via non string index") def read_df(self, key, **kwargs): env = get_environment() file = "{0}.csv".format(key) if self._directory is not None: file = "{0}/".format(self._directory) + file with env.get_input_stream(file) as ist: params = {'encoding': 'utf8'} if kwargs: params.update(kwargs) df = pandas.read_csv( ist, **params) dict.__setitem__(self, key, df) return df def get_dtype_schemas(self, path): dtype_schemas = {} if exists(path): input_schemas=json.load(open(path)) if 'input' in input_schemas: for input_schema in input_schemas['input']: dtype_schema = {} if 'fields' in input_schema: for input_schema_field in input_schema['fields']: if input_schema_field['type']=='string': dtype_schema[input_schema_field['name']]='str' if len(dtype_schema) > 0: dtype_schemas[input_schema['id']]=dtype_schema print(dtype_schemas) return dtype_schemas class _LazyDict(Mapping): def __init__(self, *args, **kw): self._raw_dict = _InputDict(*args, **kw) def __getitem__(self, key): return self._raw_dict.__getitem__(key) def __iter__(self): return iter(self._raw_dict) def __len__(self): return len(self._raw_dict) def read_df(self, key, **kwargs): return self._raw_dict.read_df(key, **kwargs) def get_all_inputs(directory=None): '''Utility method to read a list of files and return a tuple with all read data frames. Returns: a map { datasetname: data frame } ''' all_csv = "*.csv" g = join(directory, all_csv) if directory else all_csv names = [splitext(basename(f))[0] for f in glob.glob(g)] result = _LazyDict(directory, names) return result
Output data
This example shows you how, if you use outputs in a dataframe dictionary, how to write all
outputs and save the dictionary data as the output of the
job.
def write_all_outputs(outputs): '''Write all dataframes in ``outputs`` as .csv. Args: outputs: The map of outputs 'outputname' -> 'output df' ''' for (name, df) in iteritems(outputs): csv_file = '%s.csv' % name print(csv_file) with get_environment().get_output_stream(csv_file) as fp: if sys.version_info[0] < 3: fp.write(df.to_csv(index=False, encoding='utf8')) else: fp.write(df.to_csv(index=False).encode(encoding='utf8')) if len(outputs) == 0: print("Warning: no outputs written")
You can also use the
to
save your outputs.get_environment().get_output_stream(csv_file) as fp:
For a complete example of deploying a Decision Optimization Python DOcplex model, see the Deploying a DO model with WML sample located in the jupyter folder of the DO-samples. Select the relevant product and version subfolder.
This sample can also be found in the Cloud Pak for Data Resource hub, see Deploying a Decision Optimization model in watsonx.ai Runtime.