Geospatio-temporal library for notebooks

You can use the geospatio-temporal library to expand your data science analysis in Python notebooks to include location analytics by gathering, manipulating and displaying imagery, GPS, satellite photography and historical data.

The spatio-temporal library is available in all IBM Watson Studio Spark runtime environments and if you run your notebooks in IBM Analytics Engine.

Key functions

The geospatial library includes functions to read and write data, topological functions, geohashing, indexing, ellipsoidal and routing functions.

Key aspects of the library include:

  • All calculated geometries are accurate without the need for projections.
  • The geospatial functions take advantage of the distributed processing capabilities provided by Spark.
  • The library includes native geohashing support for geometries used in simple aggregations and in indexing, thereby improving storage retrieval considerably.
  • The library supports extensions of Spark distributed joins.
  • The library supports the SQL/MM extensions to Spark SQL.

Getting started with the library

Before you can start using the library in a notebook, you must register STContext in your notebook to access the st functions.

To register STContext:

from pyst import STContext
stc = STContext(spark.sparkContext._gateway)

Next steps

After you have registered STContext in your notebook, you can begin exploring the spatio-temporal library for:

  • Functions to read and write data
  • Topological functions
  • Geohashing functions
  • Geospatial indexing functions
  • Ellipsoidal functions
  • Routing functions

Check out the following sample Python notebooks to learn how to use these different functions in Python notebooks: