Go back to the English version of the documentation使用 JSON 配置文件配置资产部署
使用 JSON 配置文件配置资产部署
Last updated: 2024年10月03日
导入 JSON 文件,为模型评估创建和配置资产的所有部署。 导出配置文件以配置其他资产及其部署。
注:
您还可以使用 import subscription 和 export subscription API 方法导入和导出用于模型评估的配置。
装入 JSON 文件内容作为 Python 字典
对于本示例,文件 sagemaker_native_multiclass_breast-cancer_all_monitors_sub_configuration.json
定义了用于预测癌症类型的模型的配置数据。
要在 Python 中装入该文件,请运行以下命令:
configuration_file_path = 'sagemaker_native_multiclass_breast-cancer_all_monitors_sub_configuration.json'
with open(configuration_file_path, 'r') as fp:
subscription_configuration = json.load(fp)
该文件包含配置数据。 请参阅以下示例。 查看 Notebook 以获取配置内容的完整示例。
{'asset': {'asset_id': '0530ab0cd4f4dd5486b19c08df8b6914',
'asset_type': 'model',
'created_at': '2018-10-10T14:31:44.348Z',
'name': 'DEMO-multi-classification-2018-10-10-14-26-26',
'url': 's3://sagemaker-us-east-1-014862798213/sagemaker/DEMO-breast-cancer-prediction/DEMO-multi-classification-2018-10-10-14-26-26/output/model.tar.gz'},
'asset_properties': {'categorical_fields': [],
'feature_fields': ['radius_mean',
'texture_mean',
. . .
'input_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'input_data_type': 'structured',
'label_column': 'diagnosis',
'output_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'prediction_field': 'predicted_label',
'prediction_probability_field': 'score',
'problem_type': 'multiclass',
'training_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'configurations': {'explainability': {'training_statistics': {'base_values': {'0': 13.37,
'1': 18.84,
'10': 0.3242,
. . .
'fairness_monitoring': {'class_label': 'predicted_label',
'distributions': [{'attribute': 'radius_mean',
'class_labels': [{'counts': [{'class_value': 'B', 'count': 1}],
'label': '[6.8, 7.2]'},
{'counts': [{'class_value': 'B', 'count': 3}], 'label': '[7.6, 8.0]'},
{'counts': [{'class_value': 'B', 'count': 2}], 'label': '[8.0, 8.4]'},
. . .
'favourable_class': ['M'],
'features': [{'feature': 'radius_mean',
'majority': [[0.0, 10.0], [19.0, 20.0]],
'minority': [[15.0, 16.0]],
'threshold': 0.8,
'type': 'float'}],
'min_records': 5,
'perform_debias': True,
'run_status': 'INITIATED',
'training_data_class_label': None,
'unfavourable_class': ['B']},
'payload_logging': {'dynamic_schema_update': True,
'output_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'performance_monitoring': {},
'quality_monitoring': {'evaluation_definition': {'method': 'multiclass',
'threshold': 0.8},
'min_feedback_data_size': 5,
'scheduleId': '63c7f400-aa29-4539-91ad-8a4b9d2b9a51'}},
'deployments': [{'created_at': '2018-10-10T14:39:21.421Z',
'deployment_id': '37a83f399e6dc3b9d08d7d01fe690665',
'deployment_rn': 'arn:aws:sagemaker:us-east-1:014862798213:endpoint/demo-multi-classification-endpoint-201810101439',
'deployment_type': 'online',
'name': 'DEMO-multi-classification-endpoint-201810101439',
'scoring_endpoint': {'request_headers': {'Content-Type': 'application/json'},
'url': 'DEMO-multi-classification-endpoint-201810101439'},
'url': 'DEMO-multi-classification-endpoint-201810101439'}],
'export_info': {'api_version': 'v1',
'origin': '/v1/data_marts/b73545e6-0a6e-466c-8cd0-c47c044c5702/service_bindings/bf44cc7f-990d-4942-bfc6-cbcf71a1b78c/subscriptions/0530ab0cd4f4dd5486b19c08df8b6914',
'timestamp': '2019-02-11T11:41:01.613Z'}}
从配置文件导入
现在,运行调用以添加并配置样本乳腺癌预测模型部署的资产部署。
subscription = client.data_mart.subscriptions.import_configuration(binding_uid=binding_uid, configuration_data=subscription_configuration)
如果仅绑定了一个 ML 引擎,binding_uid
参数是可选的。
导出到配置文件
还可以将配置文件导出为 JSON:
exported_configuration = client.data_mart.subscriptions.export_configuration(binding_uid=binding_uid, subscription_uid=subscription.uid)
结果
资产部署已创建,可用于模型评估。
父主题: 准备评估模型