Translation not up to date
İzleme amacıyla varlığınızın tüm devreye alımlarını oluşturmak ve yapılandırmak için Watson OpenScale içinde bir JSON dosyasını içe aktarın. Diğer varlıkları ve bunların konuşlandırmalarını yapılandırmak için yapılandırma dosyasını dışa aktarın.
Ayrıca, aboneliği içe aktarma ve aboneliği dışa aktarma API yöntemlerini kullanarak yapılandırmaları Watson OpenScale ' e aktarabilir ve dışa aktarabilirsiniz.
JSON dosyası içeriğini Python sözlüğü olarak yükle
Bu örnek için sagemaker_native_multiclass_breast-cancer_all_monitors_sub_configuration.json
dosyası, kanser tipini tahmin eden bir modele ilişkin yapılandırma verilerini tanımlar.
Dosyayı Python' da yüklemek için aşağıdaki komutu çalıştırın:
configuration_file_path = 'sagemaker_native_multiclass_breast-cancer_all_monitors_sub_configuration.json'
with open(configuration_file_path, 'r') as fp:
subscription_configuration = json.load(fp)
Dosya, yapılandırma verilerini içerir. Aşağıdaki örneğe bakın. Yapılandırma içeriğinin eksiksiz bir örneği için not defterine bakın.
{'asset': {'asset_id': '0530ab0cd4f4dd5486b19c08df8b6914',
'asset_type': 'model',
'created_at': '2018-10-10T14:31:44.348Z',
'name': 'DEMO-multi-classification-2018-10-10-14-26-26',
'url': 's3://sagemaker-us-east-1-014862798213/sagemaker/DEMO-breast-cancer-prediction/DEMO-multi-classification-2018-10-10-14-26-26/output/model.tar.gz'},
'asset_properties': {'categorical_fields': [],
'feature_fields': ['radius_mean',
'texture_mean',
. . .
'input_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'input_data_type': 'structured',
'label_column': 'diagnosis',
'output_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'prediction_field': 'predicted_label',
'prediction_probability_field': 'score',
'problem_type': 'multiclass',
'training_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'configurations': {'explainability': {'training_statistics': {'base_values': {'0': 13.37,
'1': 18.84,
'10': 0.3242,
. . .
'fairness_monitoring': {'class_label': 'predicted_label',
'distributions': [{'attribute': 'radius_mean',
'class_labels': [{'counts': [{'class_value': 'B', 'count': 1}],
'label': '[6.8, 7.2]'},
{'counts': [{'class_value': 'B', 'count': 3}], 'label': '[7.6, 8.0]'},
{'counts': [{'class_value': 'B', 'count': 2}], 'label': '[8.0, 8.4]'},
. . .
'favourable_class': ['M'],
'features': [{'feature': 'radius_mean',
'majority': [[0.0, 10.0], [19.0, 20.0]],
'minority': [[15.0, 16.0]],
'threshold': 0.8,
'type': 'float'}],
'min_records': 5,
'perform_debias': True,
'run_status': 'INITIATED',
'training_data_class_label': None,
'unfavourable_class': ['B']},
'payload_logging': {'dynamic_schema_update': True,
'output_data_schema': {'fields': [{'metadata': {'modeling_role': 'feature'},
'name': 'radius_mean',
'nullable': True,
'type': 'double'},
{'metadata': {'modeling_role': 'feature'},
'name': 'texture_mean',
'nullable': True,
'type': 'double'},
. . .
'performance_monitoring': {},
'quality_monitoring': {'evaluation_definition': {'method': 'multiclass',
'threshold': 0.8},
'min_feedback_data_size': 5,
'scheduleId': '63c7f400-aa29-4539-91ad-8a4b9d2b9a51'}},
'deployments': [{'created_at': '2018-10-10T14:39:21.421Z',
'deployment_id': '37a83f399e6dc3b9d08d7d01fe690665',
'deployment_rn': 'arn:aws:sagemaker:us-east-1:014862798213:endpoint/demo-multi-classification-endpoint-201810101439',
'deployment_type': 'online',
'name': 'DEMO-multi-classification-endpoint-201810101439',
'scoring_endpoint': {'request_headers': {'Content-Type': 'application/json'},
'url': 'DEMO-multi-classification-endpoint-201810101439'},
'url': 'DEMO-multi-classification-endpoint-201810101439'}],
'export_info': {'api_version': 'v1',
'origin': '/v1/data_marts/b73545e6-0a6e-466c-8cd0-c47c044c5702/service_bindings/bf44cc7f-990d-4942-bfc6-cbcf71a1b78c/subscriptions/0530ab0cd4f4dd5486b19c08df8b6914',
'timestamp': '2019-02-11T11:41:01.613Z'}}
Yapılandırma dosyasından içe aktar
Şimdi, örnek meme kanseri öngörü modeli devreye alımı için varlık devreye alımını eklemek ve yapılandırmak için aramayı çalıştırın.
subscription = client.data_mart.subscriptions.import_configuration(binding_uid=binding_uid, configuration_data=subscription_configuration)
binding_uid
parametresi, tek bir ML motoru bağlıysa isteğe bağlıdır.
Yapılandırma dosyasına (dışa) aktarma
Yapılandırma dosyasını JSON olarak da dışa aktarabilirsiniz:
exported_configuration = client.data_mart.subscriptions.export_configuration(binding_uid=binding_uid, subscription_uid=subscription.uid)
Sonuçlar
Varlık devreye alımı, Watson OpenScaletarafından kullanılmak üzere oluşturulur ve yapılandırılır.
Üst konu: Bir modeli değerlendirme hazırlığı