Cloud Pak for Data as a Service 에서 IBM Match 360 with Watson (베타) 서비스를 사용하여 비즈니스를 촉진하고 신뢰할 수 있는 단일 360도 고객 보기를 설정하는 이종 소스의 데이터를 통합하십시오.
IBM Match 360 을 사용하면 여러 소스에서 데이터 레코드를 분석하여 각 고객에 대한 보다 명확한 보기를 제공할 수 있습니다. 엔터프라이즈의 시스템에서 IBM Match 360으로 레코드 데이터를 로드하고 일치 알고리즘을 실행하여 신뢰할 수 있는 마스터 데이터 엔티티를 작성하여 해당 데이터를 통합합니다. 데이터와 일치하면 IBM Match 360은 통계 및 그래프를 표시하여 비즈니스 사용자가 마스터 데이터를 분석하고 탐색하는 데 도움이 됩니다.
IBM Match 360 with Watson Lite 플랜을 사용하면 계정당 하나의 서비스 인스턴스를 작성하고 최대 백만 개의 레코드를 처리할 수 있습니다. Lite 계획을 사용하는 서비스는 60일 동안 활성화됩니다. Lite 플랜 서비스는 비활성 30일 후에 삭제됩니다.
다음 이미지는 IBM Match 360 이 조직 전체에서 데이터를 일치시켜 신뢰할 수 있는 마스터 데이터 엔티티를 작성하는 예제 시나리오를 보여줍니다.
일치하는 개요
IBM Match 360 서비스에는 마스터 데이터 구성과 마스터 데이터 작업 공간이라는 두 가지 상호 보완적인 사용자 환경이 포함되어 있습니다.
IBM Match 360 사용자 경험
IBM Match 360 사용자 경험
사용자 그룹 권한
조치
마스터 데이터 구성
DataEngineer
마스터 데이터 준비 및 구성: - IBM Match 360 서비스의 마스터 데이터 구성 자산을 구성하십시오. - 데이터 자원을 업로드하거나 데이터 소스를 연결합니다. - 생성된 데이터 모델을 정제합니다. - 모델에 데이터를 맵핑합니다. - IBM Match 360 서비스의 강력한 일치 기능을 실행하여 마스터 데이터 엔티티를 작성하십시오. - 조직의 요구사항을 충족시키기 위해 일치하는 알고리즘을 구성하고 조정하십시오.
Use this interactive map to learn about the relationships between your tasks, the tools you need, the services that provide the tools, and where you use the tools.
Select any task, tool, service, or workspace
You'll learn what you need, how to get it, and where to use it.
Some tools perform the same tasks but have different features and levels of automation.
Jupyter notebook editor
Prepare data
Visualize data
Build models
Deploy assets
Create a notebook in which you run Python, R, or Scala code to prepare, visualize, and analyze data, or build a model.
AutoAI
Build models
Automatically analyze your tabular data and generate candidate model pipelines customized for your predictive modeling problem.
SPSS Modeler
Prepare data
Visualize data
Build models
Create a visual flow that uses modeling algorithms to prepare data and build and train a model, using a guided approach to machine learning that doesn’t require coding.
Decision Optimization
Build models
Visualize data
Deploy assets
Create and manage scenarios to find the best solution to your optimization problem by comparing different combinations of your model, data, and solutions.
Data Refinery
Prepare data
Visualize data
Create a flow of ordered operations to cleanse and shape data. Visualize data to identify problems and discover insights.
Orchestration Pipelines
Prepare data
Build models
Deploy assets
Automate the model lifecycle, including preparing data, training models, and creating deployments.
RStudio
Prepare data
Build models
Deploy assets
Work with R notebooks and scripts in an integrated development environment.
Federated learning
Build models
Create a federated learning experiment to train a common model on a set of remote data sources. Share training results without sharing data.
Deployments
Deploy assets
Monitor models
Deploy and run your data science and AI solutions in a test or production environment.
Catalogs
Catalog data
Governance
Find and share your data and other assets.
Metadata import
Prepare data
Catalog data
Governance
Import asset metadata from a connection into a project or a catalog.
Metadata enrichment
Prepare data
Catalog data
Governance
Enrich imported asset metadata with business context, data profiling, and quality assessment.
Data quality rules
Prepare data
Governance
Measure and monitor the quality of your data.
Masking flow
Prepare data
Create and run masking flows to prepare copies of data assets that are masked by advanced data protection rules.
Governance
Governance
Create your business vocabulary to enrich assets and rules to protect data.
Data lineage
Governance
Track data movement and usage for transparency and determining data accuracy.
AI factsheet
Governance
Monitor models
Track AI models from request to production.
DataStage flow
Prepare data
Create a flow with a set of connectors and stages to transform and integrate data. Provide enriched and tailored information for your enterprise.
Data virtualization
Prepare data
Create a virtual table to segment or combine data from one or more tables.
OpenScale
Monitor models
Measure outcomes from your AI models and help ensure the fairness, explainability, and compliance of all your models.
Data replication
Prepare data
Replicate data to target systems with low latency, transactional integrity and optimized data capture.
Master data
Prepare data
Consolidate data from the disparate sources that fuel your business and establish a single, trusted, 360-degree view of your customers.
Services you can use
Services add features and tools to the platform.
watsonx.ai Studio
Develop powerful AI solutions with an integrated collaborative studio and industry-standard APIs and SDKs. Formerly known as Watson Studio.
watsonx.ai Runtime
Quickly build, run and manage generative AI and machine learning applications with built-in performance and scalability. Formerly known as Watson Machine Learning.
IBM Knowledge Catalog
Discover, profile, catalog, and share trusted data in your organization.
DataStage
Create ETL and data pipeline services for real-time, micro-batch, and batch data orchestration.
Data Virtualization
View, access, manipulate, and analyze your data without moving it.
Watson OpenScale
Monitor your AI models for bias, fairness, and trust with added transparency on how your AI models make decisions.
Data Replication
Provide efficient change data capture and near real-time data delivery with transactional integrity.
Match360 with Watson
Improve trust in AI pipelines by identifying duplicate records and providing reliable data about your customers, suppliers, or partners.
Manta Data Lineage
Increase data pipeline transparency so you can determine data accuracy throughout your models and systems.
Where you'll work
Collaborative workspaces contain tools for specific tasks.
Project
Where you work with data.
> Projects > View all projects
Catalog
Where you find and share assets.
> Catalogs > View all catalogs
Space
Where you deploy and run assets that are ready for testing or production.
> Deployments
Categories
Where you manage governance artifacts.
> Governance > Categories
Data virtualization
Where you virtualize data.
> Data > Data virtualization
Master data
Where you consolidate data into a 360 degree view.