Viele Unternehmen haben Schwierigkeiten, die Vorteile des Zugriffs auf Daten mit der Notwendigkeit des Schutzes sensibler Daten in Einklang zu bringen. Cloud Pak for Data as a Service stellt die Methoden bereit, die Ihr Unternehmen für die Automatisierung der Datengovernance benötigt, damit Sie sicherstellen können, dass Daten zugänglich und geschützt sind.
Sehen Sie sich dieses Video an, um den Anwendungsfall für die Implementierung einer Data-Governance-Lösung in Cloud Pak for Datazu sehen.
Dieses Video bietet eine visuelle Methode zum Erlernen der Konzepte und Tasks in dieser Dokumentation.
Challenges (Abfragen)
Viele Unternehmen stehen vor den folgenden Herausforderungen bei der Datengovernance:
- Datenschutz im richtigen Maß
- Unternehmen müssen Datenschutzbestimmungen für Daten in Datenquellen über mehrere Cloudplattformen hinweg und lokal einhalten.
- Auf qualitativ hochwertige Daten zugreifen
- Unternehmen müssen über mehrere Teams hinweg Zugriff auf hochwertige Unternehmensdaten bieten.
- Vollständiges Kundenprofil erstellen
- Teams müssen präzise Kundenansichten im richtigen Maß schnell erstellen, um Self-Service-Prozesse und Data Stewardship zu optimieren.
- Self-Service-Datennutzung bereitstellen
- Datenkonsumenten, z. B. Data-Scientists, haben Schwierigkeiten, die benötigten Daten zu finden und zu verwenden.
Sie können diese Herausforderungen lösen, indem Sie eine Datenstruktur mit Cloud Pak for Data as a Serviceimplementieren.
Beispiel: Herausforderungen der Goldenen Bank
Verfolgen Sie die Geschichte der Golden Bank, während das Governance-Team Datengovernance implementiert. Die Golden Bank verfügt über eine große Menge an Kunden-und Hypothekendaten, die sensible Daten enthalten. Die Bank möchte die Qualität der Daten sicherstellen, die sensiblen Daten maskieren und für die Verwendung in mehreren Abteilungen verfügbar machen.
Prozess
Wie Sie Datengovernance implementieren, hängt von den Anforderungen Ihres Unternehmens ab. Sie können Datengovernance linear oder iterativ implementieren. Sie können Standardfeatures und vordefinierte Artefakte verwenden oder Ihre Lösung anpassen.
Um Datengovernance zu implementieren, könnte Ihr Unternehmen den folgenden Prozess befolgen:
- Geschäftsvokabular erstellen
- Regeln zum Schutz Ihrer Daten definieren
- Daten kuratieren und konsolidieren
- Daten in Katalogen gemeinsam nutzen
Der Service IBM Knowledge Catalog in Cloud Pak for Data stellt die Tools und Prozesse bereit, die Ihre Organisation benötigt, um eine Datengovernance-Lösung zu implementieren.
1. Erstellen Sie Ihr Geschäftsvokabular
Um die Herausforderungen zu meistern, muss Ihr Team ein Geschäftsvokabular einrichten, indem es Governance-Artefakte importiert oder erstellt, die als Metadaten dienen, um die Daten zu klassifizieren und zu beschreiben.
- Bevor Sie den Datenschutz automatisieren können, muss Ihr Team sicherstellen, dass die zu kontrollierenden Daten genau identifiziert werden.
- Bevor Sie die Datenqualität analysieren können, müssen Sie das Format der Daten ermitteln.
- Damit Daten leicht zu finden sind, muss Ihr Team sicherstellen, dass der Inhalt der Daten korrekt beschrieben wird.
In diesem ersten Schritt des Prozesses kann Ihr Governance-Team auf der Basis der vordefinierten Governance-Artefakte aufbauen und angepasste Governance-Artefakte erstellen, die für Ihre Organisation spezifisch sind. Sie können Artefakte erstellen, um Format, Geschäftsbedeutung, Sensitivität, Wertebereich und Governance-Richtlinien der Daten zu beschreiben.
Was Sie verwenden können | Aktion | Am besten zu verwenden, wenn |
---|---|---|
Kategorien | Verwenden Sie die vordefinierte Kategorie zum Speichern Ihrer Governance-Artefakte. Erstellen Sie Kategorien, um Governance-Artefakte in einer hierarchischen Struktur ähnlich wie Ordner zu organisieren. Fügen Sie Mitarbeiter mit Rollen hinzu, die ihre Berechtigungen für die Artefakte in der Kategorie definieren. |
Sie benötigen mehr als die vordefinierte Kategorie. Sie möchten differenziert steuern, wer Eigner, Autor und Ansicht von Governance-Artefakten sein kann. |
Workflows | Verwenden Sie die Standardworkflowkonfiguration, die nicht einschränkt, wer Governance-Artefakte erstellt oder Prüfungen erfordert. Konfigurieren Sie Workflows für Governance-Artefakte und bestimmen Sie, wer welche Typen von Governance-Artefakten in welchen Kategorien erstellen kann. |
Sie möchten steuern, wer Governance-Artefakte erstellt. Sie möchten, dass Entwürfe von Governance-Artefakten geprüft werden, bevor sie veröffentlicht werden. |
Governance-Artefakte | Verwenden Sie die vordefinierten Geschäftsbegriffe, Datenklassen und Klassifikationen. Erstellen Sie Governance-Artefakte, die als Metadaten dienen, um Datenassets aufzubereiten, zu definieren und zu steuern. |
Sie möchten Wissen und Bedeutung zu Assets hinzufügen, um die Daten besser verstehen zu können. Sie möchten die Datenqualitätsanalyse verbessern. |
Knowledge Accelerators | Importieren Sie eine Gruppe vordefinierter Governance-Artefakte, um die Datenklassifizierung, die Einhaltung gesetzlicher Bestimmungen, Self-Service-Analysen und andere Governance-Operationen zu verbessern. | Sie benötigen ein Standardvokabular, um Geschäftsprobleme, Geschäftsleistung, Branchenstandards und Bestimmungen zu beschreiben. Sie möchten Zeit sparen, indem Sie vorab erstellte Governance-Artefakte importieren. |
Beispiel: Geschäftsvokabular der Golden Bank
Der Governance-Teamleiter der Golden Bank beginnt mit der Erstellung einer Kategorie ( Banking), die die Governance-Artefakte enthält, die das Team erstellen möchte. Der Teamleiter fügt die übrigen Mitglieder des Governance-Teams als Mitarbeiter zur Kategorie Banking mit der Rolle Editor hinzu, sodass sie berechtigt sind, Governance-Artefakte zu erstellen. Anschließend konfiguriert der Teamleiter Workflows, sodass ein anderes Teammitglied für die Erstellung jedes Artefakttyps verantwortlich ist. Alle Workflows erfordern einen Genehmigungsschritt durch den Teamleiter.
Ein Mitglied des Governance-Teams importiert eine Gruppe von Geschäftsbegriffen aus einem Arbeitsblatt. Einige der Geschäftsbegriffe sind mit den Berufen der persönlichen Kunden verbunden. Ein anderes Teammitglied erstellt ein Referenzdataset, "Berufe", das eine Liste von Berufen enthält, wobei jeder Beruf eine ID-Nummer hat. Ein drittes Teammitglied erstellt eine benutzerdefinierte Datenklasse, "Profession", um den Beruf der persönlichen Kunden auf der Basis des Referenzdataset zu identifizieren.
2. Regeln zum Schutz Ihrer Daten definieren
Im nächsten Schritt des Prozesses definiert Ihr Team Regeln, um die Einhaltung von Datenschutzbestimmungen sicherzustellen, indem es kontrolliert, wer welche Daten anzeigen kann. Ihr Team erstellt Datenschutzregeln, um zu definieren, wie Daten in regulierten Katalogen geschützt werden sollen. Ihr Team kann diese Datenschutzregeln verwenden, um sensible Daten basierend auf dem Inhalt, dem Format oder der Bedeutung der Daten oder der Identität der Benutzer, die auf die Daten zugreifen, zu maskieren.
Was Sie verwenden können | Aktion | Am besten zu verwenden, wenn |
---|---|---|
Datenschutzregeln | Schützen Sie sensible Informationen vor unbefugtem Zugriff in regulierten Katalogen, indem Sie den Zugriff auf Daten verweigern, Datenwerte maskieren oder Zeilen in Datenassets filtern. Maskieren Sie Daten in regulierten Katalogen dynamisch und konsistent auf einer benutzerdefinierten differenzierten Ebene. |
Sie müssen den Datenschutz in Ihren regulierten Katalogen automatisch durchsetzen. Sie möchten die Verfügbarkeit und den Nutzen von Daten beibehalten und gleichzeitig die Datenschutzbestimmungen einhalten. |
Maskierungsabläufe | Verwenden Sie erweiterte formatbeibehaltende Datenmaskierungsfunktionen, wenn Sie Kopien oder Untergruppen von Produktionsdaten extrahieren. | Sie benötigen anonymisierte Trainingsdaten und Testsätze, die die Datenintegrität wahren. |
Richtlinien und Governance-Regeln | Beschreiben und dokumentieren Sie die Richtlinien, Verordnungen, Standards oder Prozeduren Ihres Unternehmens für die Datensicherheit. Beschreiben Sie das erforderliche Verhalten oder die erforderlichen Aktionen zur Implementierung der Governance-Richtlinie. |
Sie möchten, dass die Personen, die die Daten verwenden, die Datengovernance-Richtlinien verstehen. |
Beispiel: Datenschutzregeln der Golden Bank
Um ein Vorhersagemodell für Hypothekengenehmigungen zu erstellen, benötigen Data-Scientists der Golden Bank Zugriff auf Datasets, die sensible Daten enthalten. Die Data-Scientists möchten zum Beispiel auf die Tabelle mit Daten zu Hypothekenantragstellern zugreifen, die eine Spalte mit Sozialversicherungsnummern enthält.
Ein Governance-Teammitglied erstellt eine Datenschutzregel, die Sozialversicherungsnummern maskiert. Wenn die zugeordnete Datenklasse einer Spalte in einem Datenasset "US Social Security Number" lautet, werden die Werte in dieser Spalte durch 10 x ersetzt.
Ein Mitglied des Governance-Teams erstellt eine Richtlinie, die die Datenschutzregel enthält. Die Richtlinie beschreibt die Geschäftsgründe für das Implementieren der Regel.
3. Daten für gemeinsame Nutzung in Katalogen kuratieren
Data-Stewards kuratieren hochwertige Datenassets in Projekten und veröffentlichen sie in Katalogen, in denen die Personen, die die Daten benötigen, sie finden können. Data-Stewards erweitern die Datenassets, indem sie Governance-Artefakte als Metadaten zuweisen, die die Daten beschreiben und die semantische Suche nach Daten informieren.
Was Sie verwenden können | Aktion | Am besten zu verwenden, wenn |
---|---|---|
Metadata import | Technische Metadaten für die Daten, die einer Verbindung zugeordnet sind, automatisch importieren, um Datenassets zu erstellen. | Sie müssen viele Datenassets aus einer Datenquelle erstellen. Sie müssen die Datenassets aktualisieren, die Sie zuvor importiert haben. |
Metadatenaufbereitung | Erstellen Sie in einem einzigen Testlauf Profile für mehrere Datenassets, um Datenklassen automatisch zuzuordnen und Datentypen und Formate von Spalten zu identifizieren. Ordnen Sie Assets automatisch Geschäftsbegriffe zu und generieren Sie Begriffsvorschläge auf der Basis der Datenklassifizierung. Führen Sie den Import und die Aufbereitungsjobs in Intervallen erneut aus, um Änderungen an Datenassets zu erkennen und auszuwerten. |
Sie müssen viele Datenassets kuratieren und publizieren, die Sie importiert haben. |
Datenqualitätsanalyse | Führen Sie Datenqualitätsprüfungen für Ihre Datasets aus, um nach Qualitätsproblemen in Ihren Daten zu suchen. Sie können Änderungen am Inhalt und an der Struktur von Daten kontinuierlich verfolgen und geänderte Daten regelmäßig analysieren. |
Sie müssen wissen, ob sich die Qualität Ihrer Daten auf die Genauigkeit Ihrer Datenanalyse oder Modelle auswirken kann. Ihre Benutzer müssen ermitteln, welche Datasets korrigiert werden müssen. |
Beispiel: Datenpflege für die Goldene Bank
Die Data-Stewards im Governance-Team beginnen mit dem Import von Metadaten zum Erstellen von Datenassets in einem Projekt. Nach dem Metadatenimport verfügt die Goldene Bank über zwei Datenassets, die Tabellen mit einer Spalte namens "ID" darstellen. Nach der Metadatenanreicherung werden diese Spalten eindeutig durch ihre zugeordneten Metadaten unterschieden:
- Einer Spalte sind die Geschäftsbegriffe "Beruf" und "Beruf" und die Datenklasse "Beruf" zugeordnet.
- Der anderen Spalte werden die Geschäftsbegriffe "Personal identifier" und "Private individual" und die Datenklasse "US Social Security Number" zugeordnet.
Die Data-Stewards führen Datenqualitätsanalysen für die Datenassets durch, um sicherzustellen, dass der Gesamtdatenqualitätsscore den Schwellenwert der Goldenen Bank von 95% überschreitet.
Der Leiter des Governance-Teams erstellt den Katalog "Mortgage Approval Catalog" und fügt die Data-Stewards und Data-Scientists als Katalogmitarbeiter hinzu. Die Data-Stewards publizieren die Datenassets, die sie im Projekt erstellt haben, im Katalog.
4. Teilen oder arbeiten Sie mit Ihren Daten
Der Katalog hilft Ihren Teams, Ihre Daten zu verstehen und die richtigen Daten für die richtige Verwendung verfügbar zu machen. Data-Scientists und andere Arten von Benutzern können sich selbst bei den Daten unterstützen, die sie benötigen, während sie mit den unternehmensinternen Zugriffs-und Datenschutzrichtlinien konform bleiben. Sie können Datenassets aus einem Katalog zu einem Projekt hinzufügen, wo sie zusammenarbeiten, um die Daten vorzubereiten, zu analysieren und zu modellieren.
Was Sie verwenden können | Aktion | Am besten zu verwenden, wenn |
---|---|---|
Kataloge | Organisieren Sie Ihre Assets so, dass sie von den Mitarbeitern in Ihrem Unternehmen gemeinsam genutzt werden können. Nutzen Sie die KI-basierte semantische Suche und Empfehlungen, damit Benutzer finden, was sie brauchen. |
Ihre Benutzer müssen die qualitativ hochwertigen Daten auf einfache Weise verstehen, zusammenarbeiten, aufbereiten und auf sie zugreifen können. Sie möchten die Sichtbarkeit von Daten und die Zusammenarbeit zwischen Geschäftsbenutzern verbessern. Sie benötigen Benutzer zum Anzeigen, Zugreifen, Bearbeiten und Analysieren von Daten, ohne ihr physisches Format oder ihre Position zu kennen und ohne sie verschieben oder kopieren zu müssen. Sie möchten, dass Benutzer Assets durch Bewertung und Prüfung verbessern. |
Globale Suche | Suchen Sie in allen Projekten, Katalogen und Bereitstellungsbereichen, auf die Sie Zugriff haben, nach Assets. Suchen Sie in den Kategorien, auf die Sie Zugriff haben, nach Governance-Artefakten. |
Sie müssen Daten oder einen anderen Assettyp oder ein Governance-Artefakt finden. |
Data Refinery | Bereinigen Sie Daten, um Daten zu korrigieren oder zu entfernen, die falsch, unvollständig, nicht ordnungsgemäß formatiert oder dupliziert sind. Passen Sie Daten an, indem Sie Spalten filtern, sortieren, kombinieren oder entfernen. |
Sie müssen die Qualität oder den Nutzen von Daten verbessern. |
Beispiel: Golden Bank-Katalog
Die Data-Scientists suchen die benötigten Datenassets im Katalog und kopieren diese Assets in ein Projekt. In ihrem Projekt können die Data-Scientists die Daten optimieren, um sie für das Training eines Modells vorzubereiten.
Lernprogramme für Datengovernance
Lernprogramm | Beschreibung | Fachkenntnisse für das Lernprogramm |
---|---|---|
Hochwertige Daten kuratieren | Erstellen Sie hochwertige Datenassets, indem Sie Ihre Daten aufbereiten und Datenqualitätsanalysen durchführen. | Führen Sie die Tools Metadata import und Aufbereitung von Metadaten aus. |
Eigene Daten schützen | Steuern Sie den Zugriff auf Daten in Cloud Pak for Data as a Service. | Erstellen Sie Datenschutzregeln. |
Daten verarbeiten | Daten suchen, formen und analysieren. | Erkunden Sie einen Katalog und führen Sie das Tool Data Refinery aus. |
Virtualisierte Daten regulieren | Erweitern Sie virtualisierte Daten und stellen Sie sicher, dass virtuelle Daten geschützt sind. | Verwenden Sie die Data Virtualization, Projekte und Kataloge, um virtualisierte Daten zu verwalten. |
Weitere Informationen zur Datengovernance
- Lernprogramme für Anwendungsfälle
- IBM Knowledge Catalog -Übersicht
- IBM Knowledge Catalog
- Implementierung für Datengovernance planen
- Videos
Übergeordnetes Thema: Anwendungsfälle