Erste Schritte mit dem Erstellen, Bereitstellen und Vertrauen von Modellen

Um Modelle erstellen, bereitstellen und vertrauen zu können, sollten Sie zunächst den gesamten Workflow verstehen, ein Lernprogramm auswählen und sich weitere Lernressourcen zur Arbeit mit Watson Studio in Cloud Pak for Data as a Service ansehen.

Voraussetzung Für Cloud Pak for Data as a Service anmelden

Übersicht über den Modellworkflow

{: #overview}Der Modellworkflow umfasst drei Hauptschritte: Erstellung eines Modellassets, Bereitstellung des Modells und Aufbau von Vertrauen in das Modell.

Übersicht über den Modellworkflow

Modellasset erstellen

  1. Sie erstellen ein Projekt.
  2. Ordnen Sie den Watson Machine Learning-Service dem Projekt zu.
  3. Sie fügen dem Projekt Daten hinzu. Bereiten Sie bei Bedarf Ihre Daten vor.
  4. Wählen Sie ein Tool zum Erstellen eines Modells aus. Sie können Codeeditoren, grafische Erstellungsprogramme oder automatische Tools auswählen.

Modell bereitstellen

  1. Erstellen Sie einen Bereitstellungsbereich und fügen Sie das Modell hinzu.
  2. Stellen Sie das Modell bereit und bewerten Sie es. Überprüfen Sie dann die Vorhersagebewertungen und -einblicke.
  3. Überwachen Sie Bereitstellungsjobs in einem Dashboard.

Vertrauen in Ihre Modelle aufbauen

  1. Evaluieren Sie Ihre Bereitstellung in Bezug auf Verzerrung und Drift.
  2. Aktualisieren Sie Ihre Daten und trainieren Sie das Modell so lange, bis Sie Ihre Qualitätsziele erreichen.
  3. Aktualisieren Sie Bereitstellungen mit leistungsfähigeren Modellen.
  4. Bewerten Sie das bereitgestellte Modell, trainieren Sie es erneut und aktualisieren Sie es.

Lernprogramme

Dieses Lernprogramm enthält eine Beschreibung des Tools, ein Video, entsprechende Anweisungen und zusätzliche Lernressourcen:

Lernprogramm Beschreibung Fachkenntnisse für das Lernprogramm
Modell für maschinelles Lernen mit AutoAI erstellen und bereitstellen Automatisches Erstellen von Modellkandidaten mit dem AutoAI-Tool. Erstellen, Implementieren und Testen eines Modells ohne Codierung.
Modell für maschinelles Lernen in einem Notebook erstellen und bereitstellen Sie erstellen ein Modell, indem Sie ein Notebook aktualisieren und ausführen, das Python-Code und die Watson Machine Learning-APIs verwendet. Erstellen, Implementieren und Testen eines scikit-learn-Modells mit Python-Code.
Modell für maschinelles Lernen mit SPSS Modeler erstellen und bereitstellen Sie Erstellen ein C5.0-Modell mit dem Tool SPSS Modeler. Daten- und Operationsknoten in einen Erstellungsbereich ziehen und Eigenschaften auswählen.
Decision Optimization-Modell erstellen und bereitstellen Automatische Erstellung von Szenarios mit Modeling Assistant. Sie lösen und untersuchen Szenarios und implementieren und testen dann ein Modell ohne Codierung.


Lernressourcen

Menügeführte Lernprogramme

Klicken Sie auf der Startseite von Cloud Pak for Data as a Service auf Geführtes Lernprogramm absolvieren. Nachdem Sie das Beispielprojekt erstellt haben, wählen Sie einen Pfad aus:

  • Wählen Sie Modell in einem Notebook erstellen aus, um ein Modell mit Python-Code zu erstellen.
  • Wählen Sie Modell erstellen und bereitstellen aus, um die Erstellung eines Modells mit dem AutoAI-Tool zu automatisieren.

Dokumentation

Videos

Beispiele

  • Branchenspezifische Akzeleratoren stellen Beispielprojekte mit End-to-End-Lösungen für bestimmte Geschäftsprobleme bereit.
  • In der Beispielsammlung werden Beispiele für Notebooks, Datasets und Projekte bereitgestellt, die Sie importieren können.

Training

Übergeordnetes Thema: Erste Schritte