import watson_nlp
from watson_nlp import data_model as dm
text = "Anna went to school at University of California Santa Cruz. \
Anna joined the university in 2015."# Load Noun Phrases, Embedding and Keywords models for English
noun_phrases_model = watson_nlp.load('noun-phrases_rbr_en_stock')
use_model = watson_nlp.load('embedding_use_en_stock')
keywords_model = watson_nlp.load('keywords_embed-rank_multi_stock')
# Run the Noun Phrases model
noun_phrases = noun_phrases_model.run(text)
# Get document embeddings# No need to run any Syntax model since the 'raw_text' embed style will be used for doc embedding
syntax_analysis = dm.SyntaxPrediction(text=text)
doc_embeddings = use_model.run(syntax_analysis, doc_embed_style='raw_text')
# Get embeddings for noun phrases
noun_phrases_analysis = [dm.SyntaxPrediction(text=c.span.text) for c in noun_phrases.noun_phrases]
noun_phrase_embeddings = use_model.run_batch(noun_phrases_analysis, doc_embed_style='raw_text')
# Run the keywords model
keywords = keywords_model.run(doc_embeddings, noun_phrases, noun_phrase_embeddings, limit=2, beta=0.5)
print(keywords)