Uso de cálculo de los entornos de Watson Studio
El uso de cálculo se calcula por el número de horas de unidad de capacidad (CUH) consumidas por un tiempo de ejecución de entorno activo en Watson Studio. Los planes de Watson Studio controlan cómo se le facturan mensualmente los recursos que consume.
Se incluye una cantidad establecida de unidades de capacidad en cada plan por mes. Con los planes Standard y Enterprise, puede pagar por un mayor uso del cálculo.
Característica | Lite | Professional | Standard (heredado) | Enterprise (heredado) |
---|---|---|---|---|
Uso de procesos | 50 CUH al mes |
CUH ilimitado facturado por uso al mes |
50 CUH al mes + pago por más |
5000 CUH al mes + pago por más |
Unidades de capacidad por hora por cuaderno en Watson Studio
Tipo de capacidad | Idioma | Unidades de capacidad por hora |
---|---|---|
1 vCPU y 4 GB de RAM | Python R |
0,5 |
2 vCPU y 8 GB de RAM | Python R |
1 |
4 vCPU y 16 GB de RAM | Python R |
2 |
8 vCPU y 32 GB de RAM | Python R |
4 |
16 vCPU y 64 GB de RAM | Python R |
8 |
Controlador: 1 vCPU y 4 GB de RAM; 1 Ejecutor: 1 vCPU y 4 GB de RAM | Spark con Python Spark con R Spark con Scala |
1 CUH por ejecutor adicional es 0,5 |
Controlador: 1 vCPU y 4 GB de RAM; 1 Ejecutor: 2 vCPU y 8 GB de RAM | Spark con Python Spark con R Spark con Scala |
1,5 CUH por ejecutor adicional es 1 |
Controlador: 2 vCPU y 8 GB de RAM; 1 Ejecutor: 1 vCPU y 4 GB de RAM; | Spark con Python Spark con R Spark con Scala |
1,5 CUH por ejecutor adicional es 0,5 |
Controlador: 2 vCPU y 8 GB de RAM; 1 Ejecutor: 2 vCPU y 8 GB de RAM; | Spark con Python Spark con R Spark con Scala |
2 CUH por ejecutor adicional es 1 |
La tasa de unidades de capacidad por hora consumida se determina para:
-
Entornos Python o R predeterminados por el tamaño del hardware y el número de usuarios en un proyecto que utilizan uno o más tiempos de ejecución
Por ejemplo:
Default Python 3.8 XS
con 2 vCPU consumirá 1 CUH si se ejecuta durante una hora. Si tiene un proyecto con 7 usuarios que trabajan en cuadernos 8 horas al día, 5 días a la semana, todos utilizan el entornoDefault Python 3.8 XS
y todos cierran sus tiempos de ejecución cuando se van por la noche, el consumo de tiempo de ejecución es5 x 7 x 8 = 280 CUH per week
.El cálculo de CUH se hace más complejo cuando se utilizan diferentes entornos para ejecutar cuadernos en el mismo proyecto y si los usuarios tienen múltiples tiempos de ejecución activos, todos consumiendo sus propias CUH. Además, puede haber cuadernos, que están programados para funcionar fuera del horario de trabajo, y trabajos de larga duración, que también consumen CUH.
- Entornos de Spark predeterminados por el tamaño de configuración del hardware del controlador y el número de ejecutores y su tamaño.
Unidades de capacidad por hora para cuadernos con Decision Optimization
La tasa de unidades de capacidad por hora consumida viene determinada por el tamaño del hardware y el precio para Decision Optimization.
Tipo de capacidad | Idioma | Unidades de capacidad por hora |
---|---|---|
1 vCPU y 4 GB de RAM | Python + Decision Optimization | 0.5 + 5 = 5.5 |
2 vCPU y 8 GB de RAM | Python + Decision Optimization | 1 + 5 = 6 |
4 vCPU y 16 GB de RAM | Python + Decision Optimization | 2 + 5 = 7 |
8 vCPU y 32 GB de RAM | Python + Decision Optimization | 4 + 5 = 9 |
16 vCPU y 64 GB de RAM | Python + Decision Optimization | 8 + 5 = 11 |
Unidades de capacidad por hora para cuadernos con Watson Natural Language Processing
La tasa de unidades de capacidad por hora consumida viene determinada por el tamaño de hardware y el precio para Watson Natural Language Processing.
Tipo de capacidad | Idioma | Unidades de capacidad por hora |
---|---|---|
1 vCPU y 4 GB de RAM | Python + Watson Natural Language Processing | 0.5 + 5 = 5.5 |
2 vCPU y 8 GB de RAM | Python + Watson Natural Language Processing | 1 + 5 = 6 |
4 vCPU y 16 GB de RAM | Python + Watson Natural Language Processing | 2 + 5 = 7 |
8 vCPU y 32 GB de RAM | Python + Watson Natural Language Processing | 4 + 5 = 9 |
16 vCPU y 64 GB de RAM | Python + Watson Natural Language Processing | 8 + 5 = 11 |
Unidades de capacidad por hora para flujos de SPSS Modeler
Nombre | Tipo de capacidad | Unidades de capacidad por hora |
---|---|---|
SPSS XS predeterminado | 4 vCPU y 16 GB de RAM | 2 |
Unidades de capacidad por hora para los flujos de Data Refinery y Data Refinery
Nombre | Tipo de capacidad | Unidades de capacidad por hora |
---|---|---|
Tiempo de ejecución de Data Refinery XS predeterminado | 3 vCPU y 12 GB de RAM | 1,5 |
Spark 3.0 & R 3.6 predeterminado | 2 Ejecutores cada uno: 1 vCPU y 4 GB de RAM; Controlador: 1 vCPU y 4 GB de RAM | 1,5 |
Spark 2.4 & R 3.6 predeterminado | 2 Ejecutores cada uno: 1 vCPU y 4 GB de RAM; Controlador: 1 vCPU y 4 GB de RAM | 1,5 |
Spark 2.3 & R 3.4 predeterminado | 2 Ejecutores cada uno: 1 vCPU y 4 GB de RAM; Controlador: 1 vCPU y 4 GB de RAM | 1,5 |
Unidades de capacidad por hora para RStudio
Nombre | Tipo de capacidad | Unidades de capacidad por hora |
---|---|---|
RStudio XS predeterminado | 2 vCPU y 8 GB de RAM | 1 |
RStudio M predeterminado | 8 vCPU y 32 GB de RAM | 4 |
RStudio L predeterminado | 16 vCPU y 64 GB de RAM | 8 |
Unidades de capacidad por hora para entornos de GPU
Tipo de capacidad | GPU | Idioma | Unidades de capacidad por hora |
---|---|---|---|
1/2 x NVIDIA Tesla K80 | 1 | Python con GPU | 6 |
1 x NVIDIA Tesla K80 | 2 | Python con GPU | 12 |
2 x NVIDIA Tesla K80 | 4 | Python con GPU | 24 |
La tasa CUH de la GPU se ha cambiado para las nuevas cuentas e instancias del plan profesional. Los planes Standard y Enterprise pasarán de utilizar 4 a utilizar 6 CUH el 6 de mayo de 2022.
Límite de capacidad de tiempo de ejecución
{: #cap-limit} Se le notifica cuando está a punto de alcanzar el límite de capacidad de tiempo de ejecución mensual para el plan de servicio de Watson Studio. Cuando esto sucede, puede:
- Detener los tiempos de ejecución activos que no necesite.
- Actualizar el plan de servicio. Para obtener información actualizada, consulte Planes de precios de Watson Studio.
Recuerde:: El contador CUH sigue aumentando mientras hay un tiempo de ejecución activo, así que detenga los tiempos de ejecución que no está utilizando. Si no detiene explícitamente un tiempo de ejecución, el tiempo de ejecución se detiene después de un tiempo de espera inactivo. Durante el tiempo de inactividad, seguirá consumiendo CUH por las que se le facturará.
Realizar un seguimiento del uso del tiempo de ejecución de un proyecto
{: #track-project} Puede ver los tiempos de ejecución del entorno que están activos actualmente en un proyecto y supervisar el uso del proyecto desde la página Entornos del proyecto.
Realizar un seguimiento del uso del tiempo de ejecución de una cuenta
{: #track-account}Las CUH consumidas por los tiempos de ejecución activos en un proyecto se facturan a la cuenta que el creador del proyecto ha seleccionado en sus valores de perfil en el momento en que se crea el proyecto. Esta cuenta puede ser la cuenta del creador del proyecto u otra cuenta a la que el creador del proyecto tiene acceso. Si se añaden otros usuarios al proyecto y utilizan los tiempos de ejecución, su uso también se factura con cargo a la cuenta que el creador del proyecto eligió en el momento de la creación del mismo.
Puede realizar un seguimiento del uso de tiempo de ejecución de una cuenta en la página tiempos de ejecución del entorno si es el propietario o el administrador de la cuenta de IBM Cloud.
Para ver el uso total de tiempo de ejecución en todos los proyectos y ver la cantidad de su plan que ha utilizado actualmente, seleccione Administración > Tiempos de ejecución de entorno.
Se muestra una lista de los tiempos de ejecución activos facturados a su cuenta. Puede ver quién creó los tiempos de ejecución, cuándo y para qué proyectos, así como las unidades de capacidad que fueron consumidas por los tiempos de ejecución activos en el momento en que se visualiza la lista.
Más información
- Tiempos de espera de tiempo de ejecución desocupado
- Supervisar el uso de los recursos de la cuenta
- Actualizar el servicio
Tema principal: Gestión de recursos de cálculo