0 / 0
Run the built-in sample pipeline
Last updated: Oct 09, 2024
Run the built-in sample pipeline

You can view and run a built-in sample pipeline that uses sample data to learn how to automate machine learning flows in Watson Pipelines.

What's happening in the sample pipeline?

The sample pipeline gets training data, trains a machine learning model using the AutoAI tool, and selects the best pipeline to save as a model. The model is then copied to a deployment space where is deployed.

The sample illustrates how you can automate an end-to-end flow to make the lifecycle easier to run and monitor.

The sample pipeline looks like this:

Sample orchestration pipeline

The tutorial steps you through this process:

  1. Setting up to run the sample
  2. Creating the sample pipeline
  3. Running the sample
  4. Reviewing the results
  5. Exploring the sample nodes and configuration

Prerequisites

To run this sample, you must first create:

  • A project, where you can run the sample pipeline.
  • A deployment space, where you can view and test the results. The deployment space is required to run the sample pipeline.

Preview creating and running the sample pipeline

Watch this video to see how to create and run a sample pipeline.

This video provides a visual method to learn the concepts and tasks in this documentation.

Creating the sample pipeline

Create the sample pipeline in the Pipelines editor.

  1. Open the project where you want to create the pipeline.

  2. From the Assets tab, click New task > Automate model lifecycle.

  3. Enter a unique name for the pipeline. For example, enter Bank marketing sample.

  4. Click Create to open the canvas.

  5. Click the Samples tab, and select the Orchestrate an AutoAI experiment.

Running the sample pipeline

To run the sample pipeline:

  1. Click Run pipeline on the canvas toolbar, then choose Trial run.

  2. Select a deployment space when prompted to provide a value for the deployment_space pipeline parameter.

    1. Click Select Space.

    2. Expand the Spaces section.

    3. Select your deployment space.

    4. Click Choose.

  3. Provide an API key if this occasion is your first time running a pipeline. Pipeline assets use your personal IBM Cloud API key to run operations securely without disruption.

    • If you have an existing API key, click Use existing API key, paste the API key, and click Save.

    • If you don't have an existing API key, click Generate new API key, provide a name, and click Save. Copy the API key, and then save the API key for future use. When you're done, click Close.

  4. Click Run to start the pipeline.

Reviewing the results

When the pipeline run completes, you can view the output to see the results.

Sample pipeline run output

Open the deployment space you specified as part of the pipeline. You will see the new deployment in the space:

Sample pipeline deployment

If you want to test the deployment, use the deployment space Test page to submit payload data in JSON format and get a score back. For example, click the JSON tab and enter this input data:

 {"input_data": [{"fields": ["age","job","marital","education","default","balance","housing","loan","contact","day","month","duration","campaign","pdays","previous","poutcome"],"values": [["30","unemployed","married","primary","no","1787","no","no","cellular","19","oct","79","1","-1","0","unknown"]]}]}

When you click Predict, the model generates output with a confidence score for the prediction of whether a customer will subscribe to a term deposit promotion.

Prediction score for the sample model

In this case, the prediction of "no" is accompanied by a confidence score of close to 95%, predicting that the client most likely will not subscribe to a term deposit.

Exploring the sample nodes and configuration

Get a deeper understanding of how the sample nodes were configured to work in concert in the pipeline sample.

Viewing the pipeline parameter

A pipeline parameter specifies a setting for the entire pipeline. In the sample pipeline, a pipeline parameter is used to specify a deployment space where the model saved from the AutoAI experiment is stored and deployed. You are prompted to select the deployment space the pipeline parameter will link to.

Click the Global objects icon on the canvas toolbar to view or create pipeline parameters. In the sample pipeline, the pipeline parameter is named deployment_space and is of type Space. Click the name of the pipeline parameter to view the details. In the sample, the pipeline parameter is used with the Create data file node and the Create AutoAI experiment node.

Flow parameter to specify deployment space

Loading the training data for the AutoAI experiment

In this step, a Create data file node is configured to access the data set for the experiment. Click the node to view the configuration. The data file is bank-marketing-data.csv, which provides sample data to predict whether a bank customer will sign up for a term deposit. The data resides in a Cloud Object Storage bucket and can be refreshed to keep the model training up-to-date.

Option Value
File The location of the data asset for training the AutoAI experiment. In this case, the data file is in a project.
File path The name of the asset, bank-marketing-data.csv.
Target scope For this sample, the target is a deployment space.

Creating the AutoAI experiment

The node to Create AutoAI experiment is configured with these values:

Option Value
AutoAI experiment name onboarding-bank-marketing-prediction
Scope For this sample, the target is a deployment space.
Prediction type binary
Prediction column (label) y
Positive class yes
Training data split ration 0.9
Algorithms to include GradientBoostingClassifierEstimator
XGBClassifierEstimator
Algorithms to use 1
Metric to optimize ROC AUC
Optimize metric (optional) default
Hardware specification (optional) default
AutoAI experiment description This experiment uses a sample file, which contains text data collected from phone calls to a Portuguese bank in response to a marketing campaign. The classification goal is to predict whether a client will subscribe to a term deposit, represented by variable y.
AutoAI experiment tags (optional) none
Creation mode (optional) default

Those options define an experiment that uses the bank marketing data to predict whether a customer is likely to enroll in a promotion.

Running the AutoAI experiment

In this step, the Run AutoAI experiment node runs the AutoAI experiment onboarding-bank-marketing-prediction, trains the pipelines, then saves the best model.

Option Value
AutoAI experiment Takes the output from the Create AutoAI node as the input to run the experiment.
Training data assets Takes the output from the Create Data File node as the training data input for the experiment.
Model count 1
Holdout data asset (optional) none
Models count (optional) 3
Run name (optional) none
Model name prefix (optional) none
Run description (optional) none
Run tags (optional) none
Creation mode (optional) default
Error policy (optional) default

Deploying the model to a Web service

The Create Web deployment node creates an online deployment named onboarding-bank-marketing-prediction-deployment so you can deliver data and get predictions back in real time from the REST API endpoint.

Option Value
ML asset Takes the best model output from the Run AutoAI node as the input to create the deployment.
Deployment name onboarding-bank-marketing-prediction-deployment

Parent topic: IBM Watson Pipelines

Generative AI search and answer
These answers are generated by a large language model in watsonx.ai based on content from the product documentation. Learn more