Maschinell übersetztes Thema Sie können zur englischen Version wechseln.
Die genaueste und aktuellste Version dieser Dokumentation finden Sie in der englischen (ursprünglichen) Version. IBM haftet nicht für Schäden oder Verluste, die durch die Verwendung automatisch (maschinell) übersetzter Inhalte entstehen.
IBM Orchestration Pipelines
Letzte Aktualisierung: 25. Okt. 2024
IBM Orchestration Pipelines
Mit dem Pipelines-Editor können Sie einen durchgängigen Fluss von Assets von der Erstellung bis zur Bereitstellung auf einer grafischen Leinwand orchestrieren. Sie können eine Pipeline zum Erstellen, Trainieren, Bereitstellen und Aktualisieren von Modellen für maschinelles Lernen und Python-Skripten zusammenstellen und konfigurieren.
Entwerfen Sie eine Pipeline, indem Sie Knoten auf die Leinwand ziehen, Objekte und Parameter angeben und die Pipeline dann ausführen und überwachen.
Pfad zur Produktion automatisieren
Copy link to section
Die Einführung eines Modells in ein Produkt ist ein mehrstufiger Prozess. Daten müssen geladen und verarbeitet werden, Modelle müssen trainiert und bewertet werden, bevor sie eingesetzt und getestet werden können. KI-Experimente, Datenanalysen und Modelle des maschinellen Lernens erfordern mehr Beobachtung, Bewertung und Aktualisierung im Laufe der Zeit, um Verzerrungen oder Abweichungen zu vermeiden.
Die folgende Grafik zeigt ein Beispiel für einen Modelllebenszyklus, den Sie aus vielen möglichen Abläufen, die Sie erstellen können, automatisieren können.
Sie können die Pipeline automatisieren:
Daten aus einem breiten Spektrum interner Quellen und externer Verbindungen sicher laden und verarbeiten.
die gewünschten Ergebnisse zu erzielen, indem Sie Modelle oder Laufskripte auf kohärente Weise erstellen, ausführen, auswerten und bereitstellen.
machen es einfach, die Pfade Ihres Flusses durch das Erstellen von Verzweigungen ablaufen zu lassen und die Ergebnisse mit direkten Visualisierungen zu sammeln.
Pipelines können Experimente durchführen, einschließlich, aber nicht beschränkt auf:
AutoAI-Experimente
Jupyter Notebook Aufträge
Data Refinery Aufträge
SPSS Modeler Aufträge
Um die Zeit von der Konzeption bis zur Produktion zu verkürzen, können Sie die Pipeline zusammenstellen und Änderungen schnell aktualisieren und testen. Der Erstellungsbereich für Pipelines stellt Tools zum Visualisieren der Pipeline, zum Anpassen der Pipeline zur Laufzeit mit Pipelineparametervariablen und zum anschließenden Ausführen als Testjob oder nach einem Zeitplan bereit.
Verwenden Sie die Pipelines-Bearbeitungstools für eine kohärentere Zusammenarbeit zwischen einem Datenwissenschaftler und einem ModelOps-Ingenieur. Ein Data-Scientist kann ein Modell erstellen und trainieren. Ein ModelOps -Entwickler kann dann den Prozess des Trainings, der Bereitstellung und der Bewertung des Modells automatisieren, nachdem es in einer Produktionsumgebung veröffentlicht wurde.
Anwendungsfälle und Lernprogramme
Copy link to section
Sie können IBM Orchestration Pipelines in Ihre Data-Fabric-Lösung integrieren, um Ihren Daten- und KI-Lebenszyklus zu verwalten und zu automatisieren. Weitere Informationen darüber, wie Data Fabric Ihre Ziele und Abläufe im Bereich des maschinellen Lernens auf praktische Weise unterstützen kann, finden Sie unter Anwendungsfälle.
Der Anwendungsfall Datenwissenschaft und MLOps beschreibt, wie man Daten verwaltet, eine Pipeline für die Modellerstellung und -bereitstellung aufbaut und die Fairness und Leistung von Modellen bewertet.
Use this interactive map to learn about the relationships between your tasks, the tools you need, the services that provide the tools, and where you use the tools.
Select any task, tool, service, or workspace
You'll learn what you need, how to get it, and where to use it.
Some tools perform the same tasks but have different features and levels of automation.
Jupyter notebook editor
Prepare data
Visualize data
Build models
Deploy assets
Create a notebook in which you run Python, R, or Scala code to prepare, visualize, and analyze data, or build a model.
AutoAI
Build models
Automatically analyze your tabular data and generate candidate model pipelines customized for your predictive modeling problem.
SPSS Modeler
Prepare data
Visualize data
Build models
Create a visual flow that uses modeling algorithms to prepare data and build and train a model, using a guided approach to machine learning that doesn’t require coding.
Decision Optimization
Build models
Visualize data
Deploy assets
Create and manage scenarios to find the best solution to your optimization problem by comparing different combinations of your model, data, and solutions.
Data Refinery
Prepare data
Visualize data
Create a flow of ordered operations to cleanse and shape data. Visualize data to identify problems and discover insights.
Orchestration Pipelines
Prepare data
Build models
Deploy assets
Automate the model lifecycle, including preparing data, training models, and creating deployments.
RStudio
Prepare data
Build models
Deploy assets
Work with R notebooks and scripts in an integrated development environment.
Federated learning
Build models
Create a federated learning experiment to train a common model on a set of remote data sources. Share training results without sharing data.
Deployments
Deploy assets
Monitor models
Deploy and run your data science and AI solutions in a test or production environment.
Catalogs
Catalog data
Governance
Find and share your data and other assets.
Metadata import
Prepare data
Catalog data
Governance
Import asset metadata from a connection into a project or a catalog.
Metadata enrichment
Prepare data
Catalog data
Governance
Enrich imported asset metadata with business context, data profiling, and quality assessment.
Data quality rules
Prepare data
Governance
Measure and monitor the quality of your data.
Masking flow
Prepare data
Create and run masking flows to prepare copies of data assets that are masked by advanced data protection rules.
Governance
Governance
Create your business vocabulary to enrich assets and rules to protect data.
Data lineage
Governance
Track data movement and usage for transparency and determining data accuracy.
AI factsheet
Governance
Monitor models
Track AI models from request to production.
DataStage flow
Prepare data
Create a flow with a set of connectors and stages to transform and integrate data. Provide enriched and tailored information for your enterprise.
Data virtualization
Prepare data
Create a virtual table to segment or combine data from one or more tables.
OpenScale
Monitor models
Measure outcomes from your AI models and help ensure the fairness, explainability, and compliance of all your models.
Data replication
Prepare data
Replicate data to target systems with low latency, transactional integrity and optimized data capture.
Master data
Prepare data
Consolidate data from the disparate sources that fuel your business and establish a single, trusted, 360-degree view of your customers.
Services you can use
Services add features and tools to the platform.
watsonx.ai Studio
Develop powerful AI solutions with an integrated collaborative studio and industry-standard APIs and SDKs. Formerly known as Watson Studio.
watsonx.ai Runtime
Quickly build, run and manage generative AI and machine learning applications with built-in performance and scalability. Formerly known as Watson Machine Learning.
IBM Knowledge Catalog
Discover, profile, catalog, and share trusted data in your organization.
DataStage
Create ETL and data pipeline services for real-time, micro-batch, and batch data orchestration.
Data Virtualization
View, access, manipulate, and analyze your data without moving it.
Watson OpenScale
Monitor your AI models for bias, fairness, and trust with added transparency on how your AI models make decisions.
Data Replication
Provide efficient change data capture and near real-time data delivery with transactional integrity.
Match360 with Watson
Improve trust in AI pipelines by identifying duplicate records and providing reliable data about your customers, suppliers, or partners.
Manta Data Lineage
Increase data pipeline transparency so you can determine data accuracy throughout your models and systems.
Where you'll work
Collaborative workspaces contain tools for specific tasks.
Project
Where you work with data.
> Projects > View all projects
Catalog
Where you find and share assets.
> Catalogs > View all catalogs
Space
Where you deploy and run assets that are ready for testing or production.
> Deployments
Categories
Where you manage governance artifacts.
> Governance > Categories
Data virtualization
Where you virtualize data.
> Data > Data virtualization
Master data
Where you consolidate data into a 360 degree view.