Les parties peuvent créer et sauvegarder le modèle initial avant l'entraînement en suivant un ensemble d'exemples.
Prenez en compte les exemples de configuration qui correspondent à votre type de modèle.
Sauvegardez le modèle Tensorflow
import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
import numpy as np
import os
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True)
optimizer = tf.keras.optimizers.Adam()
acc = tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy')
model.compile(optimizer=optimizer, loss=loss_object, metrics=[acc])
img_rows, img_cols = 28, 28
input_shape = (None, img_rows, img_cols, 1)
model.compute_output_shape(input_shape=input_shape)
dir = "./model_architecture"
if not os.path.exists(dir):
os.makedirs(dir)
model.save(dir)
Si vous choisissez Tensorflow comme infrastructure de modèle, vous devez enregistrer un modèle Keras au format SavedModel
. Un modèle Keras peut être sauvegardé au format SavedModel
à l'aide de tf.keras.model.save()
.
Pour compresser vos fichiers, exécutez la commande zip -r mymodel.zip model_architecture
. Le contenu de votre fichier .zip
doit contenir:
mymodel.zip
└── model_architecture
├── assets
├── keras_metadata.pb
├── saved_model.pb
└── variables
├── variables.data-00000-of-00001
└── variables.index
Sauvegarder le modèle Scikit-learn
Classification SKLearn
# SKLearn classification
from sklearn.linear_model import SGDClassifier
import numpy as np
import joblib
model = SGDClassifier(loss='log', penalty='l2')
model.classes_ = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# You must specify the class label for IBM Federated Learning using model.classes. Class labels must be contained in a numpy array.
# In the example, there are 10 classes.
joblib.dump(model, "./model_architecture.pickle")
Régression SKLearn
# Sklearn regression
from sklearn.linear_model import SGDRegressor
import pickle
model = SGDRegressor(loss='huber', penalty='l2')
with open("./model_architecture.pickle", 'wb') as f:
pickle.dump(model, f)
SKLearn Kmeans
# SKLearn Kmeans
from sklearn.cluster import KMeans
import joblib
model = KMeans()
joblib.dump(model, "./model_architecture.pickle")
Vous devez créer un fichier .zip
contenant votre modèle au format pickle en exécutant la commande zip mymodel.zip model_architecture.pickle
. Le contenu de votre fichier .zip
doit contenir:
mymodel.zip
└── model_architecture.pickle
Sauvegardez le modèle PyTorch
import torch
import torch.nn as nn
model = nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(in_features=784, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=100, bias=True),
nn.ReLU(),
nn.Linear(in_features=100, out_features=50, bias=True),
nn.ReLU(),
nn.Linear(in_features=50, out_features=10, bias=True),
nn.LogSoftmax(dim=1),
).double()
torch.save(model, "./model_architecture.pt")
Vous devez créer un fichier .zip
contenant votre modèle au format pickle. Exécutez la commande zip mymodel.zip model_architecture.pt
. Le contenu de votre fichier .zip
doit contenir:
mymodel.zip
└── model_architecture.pt
Rubrique parent: Création d'une expérimentation d'apprentissage fédéré