0 / 0
Go back to the English version of the documentation
Tworzenie modelu początkowego
Last updated: 28 kwi 2023
Tworzenie modelu początkowego

Strony mogą tworzyć i zapisywać model początkowy przed szkoleniem, postępując zgodnie z zestawem przykładów.

Należy rozważyć przykłady konfiguracji, które są zgodne z typem modelu.

Zapisz model Tensorflow

import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
import numpy as np
import os

class MyModel(Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = Conv2D(32, 3, activation='relu')
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10)

    def call(self, x):
        x = self.conv1(x)
        x = self.flatten(x)
        x = self.d1(x)
        return self.d2(x)

# Create an instance of the model

model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True)
optimizer = tf.keras.optimizers.Adam()
acc = tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy')
model.compile(optimizer=optimizer, loss=loss_object, metrics=[acc])
img_rows, img_cols = 28, 28
input_shape = (None, img_rows, img_cols, 1)
model.compute_output_shape(input_shape=input_shape)

dir = "./model_architecture"
if not os.path.exists(dir):
    os.makedirs(dir)

model.save(dir)

W przypadku wybrania opcji Tensorflow jako struktury modelu konieczne jest zapisanie modelu Keras jako formatu SavedModel . Model Keras można zapisać w formacie SavedModel przy użyciu produktu tf.keras.model.save().

Aby skompresować pliki, uruchom komendę zip -r mymodel.zip model_architecture. Zawartość pliku .zip musi zawierać:

mymodel.zip
└── model_architecture
    ├── assets
    ├── keras_metadata.pb
    ├── saved_model.pb
    └── variables
        ├── variables.data-00000-of-00001
        └── variables.index

Zapisz model Scikit-learn

Klasyfikacja SKLearn

# SKLearn classification

from sklearn.linear_model import SGDClassifier
import numpy as np
import joblib

model = SGDClassifier(loss='log', penalty='l2')
model.classes_ = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# You must specify the class label for IBM Federated Learning using model.classes. Class labels must be contained in a numpy array.
# In the example, there are 10 classes.

joblib.dump(model, "./model_architecture.pickle")

Regresja SKLearn

# Sklearn regression

from sklearn.linear_model import SGDRegressor
import pickle


model = SGDRegressor(loss='huber', penalty='l2')

with open("./model_architecture.pickle", 'wb') as f:
    pickle.dump(model, f)

Kśrednie SKLearn

# SKLearn Kmeans
from sklearn.cluster import KMeans
import joblib

model = KMeans()
joblib.dump(model, "./model_architecture.pickle")

Aby uruchomić komendę zip mymodel.zip model_architecture.pickle, należy utworzyć plik .zip , który zawiera model w formacie klamry. Zawartość pliku .zip musi zawierać:

mymodel.zip
└── model_architecture.pickle

Zapisz model PyTorch

import torch
import torch.nn as nn

model = nn.Sequential(
    nn.Flatten(start_dim=1, end_dim=-1),
    nn.Linear(in_features=784, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=100, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=100, out_features=50, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=50, out_features=10, bias=True),
    nn.LogSoftmax(dim=1),
).double()

torch.save(model, "./model_architecture.pt")

Konieczne jest utworzenie pliku .zip zawierającego model w formacie klamry. Uruchom komendę zip mymodel.zip model_architecture.pt. Zawartość pliku .zip powinna zawierać:

mymodel.zip
└── model_architecture.pt

Temat nadrzędny: Tworzenie eksperymentu edukacyjnego stowarzyszonego

Generative AI search and answer
These answers are generated by a large language model in watsonx.ai based on content from the product documentation. Learn more