0 / 0
資料の 英語版 に戻る
初期モデルの作成
最終更新: 2024年10月07日
初期モデルの作成

パーティーは、一連の例に従って、トレーニングの前に初期モデルを作成して保存することができます。

ご使用のモデル・タイプに一致する構成例を検討してください。

Tensorflow モデルを保存します。

import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
import numpy as np
import os

class MyModel(Model):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = Conv2D(32, 3, activation='relu')
        self.flatten = Flatten()
        self.d1 = Dense(128, activation='relu')
        self.d2 = Dense(10)

    def call(self, x):
        x = self.conv1(x)
        x = self.flatten(x)
        x = self.d1(x)
        return self.d2(x)

# Create an instance of the model

model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
    from_logits=True)
optimizer = tf.keras.optimizers.Adam()
acc = tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy')
model.compile(optimizer=optimizer, loss=loss_object, metrics=[acc])
img_rows, img_cols = 28, 28
input_shape = (None, img_rows, img_cols, 1)
model.compute_output_shape(input_shape=input_shape)

dir = "./model_architecture"
if not os.path.exists(dir):
    os.makedirs(dir)

model.save(dir)

モデル・フレームワークとして Tensorflow を選択した場合は、 Keras モデルを SavedModel 形式として保存する必要があります。 Keras モデルは、 tf.keras.model.save()を使用して SavedModel 形式で保存できます。

ファイルを圧縮するには、コマンド zip -r mymodel.zip model_architectureを実行します。 .zip ファイルの内容には、以下が含まれている必要があります。

mymodel.zip
└── model_architecture
    ├── assets
    ├── keras_metadata.pb
    ├── saved_model.pb
    └── variables
        ├── variables.data-00000-of-00001
        └── variables.index

Scikit-learn モデルの保存

SKLearn 分類

# SKLearn classification

from sklearn.linear_model import SGDClassifier
import numpy as np
import joblib

model = SGDClassifier(loss='log', penalty='l2')
model.classes_ = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# You must specify the class label for IBM Federated Learning using model.classes. Class labels must be contained in a numpy array.
# In the example, there are 10 classes.

joblib.dump(model, "./model_architecture.pickle")

SKLearn 回帰

# Sklearn regression

from sklearn.linear_model import SGDRegressor
import pickle


model = SGDRegressor(loss='huber', penalty='l2')

with open("./model_architecture.pickle", 'wb') as f:
    pickle.dump(model, f)

SKLearn Kmeans

# SKLearn Kmeans
from sklearn.cluster import KMeans
import joblib

model = KMeans()
joblib.dump(model, "./model_architecture.pickle")

コマンド zip mymodel.zip model_architecture.pickleを実行して、pickle 形式のモデルを含む .zip ファイルを作成する必要があります。 .zip ファイルの内容には、以下が含まれている必要があります。

mymodel.zip
└── model_architecture.pickle

PyTorch モデルを保存します。

import torch
import torch.nn as nn

model = nn.Sequential(
    nn.Flatten(start_dim=1, end_dim=-1),
    nn.Linear(in_features=784, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=256, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=256, out_features=100, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=100, out_features=50, bias=True),
    nn.ReLU(),
    nn.Linear(in_features=50, out_features=10, bias=True),
    nn.LogSoftmax(dim=1),
).double()

torch.save(model, "./model_architecture.pt")

モデルを pickle 形式で含む .zip ファイルを作成する必要があります。 コマンド zip mymodel.zip model_architecture.ptを実行します。 .zip ファイルの内容には、以下が含まれている必要があります。

mymodel.zip
└── model_architecture.pt

親トピック: 統合学習エクスペリメントの作成

生成 AI の検索と回答
これらの回答は、製品資料の内容に基づいて、 watsonx.ai のラージ言語モデルによって生成されます。 詳細