About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: May 27, 2024
Parties can create and save the initial model before training by following a set of examples.
Consider the configuration examples that match your model type.
Save the Tensorflow model
import tensorflow as tf
from tensorflow.keras import *
from tensorflow.keras.layers import *
import numpy as np
import os
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True)
optimizer = tf.keras.optimizers.Adam()
acc = tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy')
model.compile(optimizer=optimizer, loss=loss_object, metrics=[acc])
img_rows, img_cols = 28, 28
input_shape = (None, img_rows, img_cols, 1)
model.compute_output_shape(input_shape=input_shape)
dir = "./model_architecture"
if not os.path.exists(dir):
os.makedirs(dir)
model.save(dir)
If you choose Tensorflow as the model framework, you need to save a Keras model as the
format. A Keras model can be saved in SavedModel
format by using SavedModel
.tf.keras.model.save()
To compress your files, run the command
. The contents of your zip -r mymodel.zip model_architecture
file must contain:.zip
mymodel.zip └── model_architecture ├── assets ├── keras_metadata.pb ├── saved_model.pb └── variables ├── variables.data-00000-of-00001 └── variables.index
Save the Scikit-learn model
SKLearn classification
# SKLearn classification
from sklearn.linear_model import SGDClassifier
import numpy as np
import joblib
model = SGDClassifier(loss='log', penalty='l2')
model.classes_ = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
# You must specify the class label for IBM Federated Learning using model.classes. Class labels must be contained in a numpy array.
# In the example, there are 10 classes.
joblib.dump(model, "./model_architecture.pickle")
SKLearn regression
# Sklearn regression
from sklearn.linear_model import SGDRegressor
import pickle
model = SGDRegressor(loss='huber', penalty='l2')
with open("./model_architecture.pickle", 'wb') as f:
pickle.dump(model, f)
SKLearn Kmeans
# SKLearn Kmeans
from sklearn.cluster import KMeans
import joblib
model = KMeans()
joblib.dump(model, "./model_architecture.pickle")
You need to create a
file that contains your model in pickle format by running the command .zip
. The contents of your zip mymodel.zip model_architecture.pickle
file must contain:.zip
mymodel.zip └── model_architecture.pickle
Save the PyTorch model
import torch
import torch.nn as nn
model = nn.Sequential(
nn.Flatten(start_dim=1, end_dim=-1),
nn.Linear(in_features=784, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=256, bias=True),
nn.ReLU(),
nn.Linear(in_features=256, out_features=100, bias=True),
nn.ReLU(),
nn.Linear(in_features=100, out_features=50, bias=True),
nn.ReLU(),
nn.Linear(in_features=50, out_features=10, bias=True),
nn.LogSoftmax(dim=1),
).double()
torch.save(model, "./model_architecture.pt")
You need to create a
file containing your model in pickle format. Run the command .zip
. The contents of your zip mymodel.zip model_architecture.pt
file should contain:.zip
mymodel.zip └── model_architecture.pt
Parent topic: Creating a Federated Learning experiment
Was the topic helpful?
0/1000