0 / 0
영어 버전 문서로 돌아가기
환경 템플리트 사용자 정의
마지막 업데이트 날짜: 2024년 11월 28일
환경 템플리트 사용자 정의

작성한 환경 템플리트의 이름, 설명 및 하드웨어 구성을 변경할 수 있습니다. Conda 채널을 통해 또는 파이프를 사용하여 Jupyter 노트북 환경 템플리트의 소프트웨어 구성을 사용자 정의할 수 있습니다. conda 패키지 목록, pip 패키지 목록 또는 둘의 조합을 제공할 수 있습니다. conda 패키지를 사용할 때 패키지를 확보할 수 있는 추가 conda 채널 위치 목록을 제공할 수 있습니다.

필수 권한
환경 템플리트를 사용자 정의하려면 프로젝트에서 관리 또는 편집자 역할이 있어야 합니다.
제한사항
기존 환경 템플리트의 언어를 변경할 수 없습니다.
생성한 Spark 환경 템플릿의 소프트웨어 구성은 사용자 지정할 수 없습니다.

작성한 환경 템플리트를 사용자 정의하려면 다음을 수행하십시오.

  1. 프로젝트의 관리 탭에서 환경 페이지를 클릭하십시오.
  2. 활성 런타임 섹션에서 변경하려는 환경 템플릿에 대해 활성화된 런타임이 없는지 확인합니다.
  3. 환경 템플릿 섹션에서 사용자 지정하려는 환경 템플릿을 클릭합니다.
  4. Python 템플릿의 경우, 슬라이더, 버튼, 드롭다운, 텍스트 상자 같은 대화형 요소를 IPyWidgets 라이브러리를 사용해 노트북에 추가하려면 IPyWidgets 체크상자를 선택하세요.
  5. Juypter 노트북 환경 템플릿의 경우, 패키지를 추가하려면 만들기를 클릭하고 기본적으로 제공되는 표준 패키지에 추가할 라이브러리를 지정하세요. 또한 사용자 정의를 사용하여 표준 소프트웨어 구성의 일부인 패키지를 업그레이드하거나 다운그레이드할 수도 있습니다.
  6. 패키지 사용자 지정을 추가하지 않은 경우 변경 사항을 적용하려면 창을 닫습니다. 새 패키지를 추가한 경우 적용을 클릭해야 합니다.

패키지를 사용자 지정할 때 중요합니다:

  • 사용자 지정을 통해 환경 템플릿에 추가한 라이브러리는 환경 런타임이 시작될 때마다 자동으로 설치됩니다. 이 템플릿을 사용하는 다른 프로젝트 멤버도 이 패키지를 사용할 수 있습니다. 이미 실행 중인 노트북의 셀에 추가된 사용자 지정은 다른 회원들과 공유되지 않는다는 점에 유의하세요.
  • 패키지를 사용자 지정하기 전에 계획 중인 변경 사항이 의도한 효과를 가져오는지 확인하세요.
    • conda은(는) 지정된 패키지를 설치하는 데 필요한 변경사항을 실제로 설치하지 않고도 보고할 수 있습니다. 노트북에서 변경사항을 확인할 수 있습니다. 예를 들어, 고정 라이브러리의 경우 다음과 같습니다.
      • Python 노트북에서 !conda install --dry-run plotly을(를) 입력하십시오.
      • R 노트북에서 다음을 입력하십시오. print(system2("conda", args=c("install","--dry-run","r-plotly"), stdout=TRUE))
    • pip은(는) 패키지를 설치합니다. 그러나 확인 후 런타임을 다시 다시 시작하면 패키지가 제거됩니다. 여기에서도 노트북의 변경사항을 확인합니다. 예를 들어, 고정 라이브러리의 경우 다음과 같습니다.
      • Python 노트북에서 !pip install plotly을(를) 입력하십시오.
      • R 노트북에서 다음을 입력하십시오. print(system2("pip", args="install plotly", stdout=TRUE))
  • 기본 채널에서 conda을(를) 통해 패키지를 가져올 수 있고 PyPI에서 pip을(를) 통해 패키지를 가져올 수 있는 경우, 기본 채널에서 선호되는 방법은 conda입니다.
  • Conda는 사용자 정의에 많은 패키지를 추가하는 경우 메모리가 집약적일 수 있는 패키지를 설치할 때 종속성 검사를 수행합니다. 런타임을 시작할 때 종속성 확인이 가능하도록 RAM이 충분한 환경을 선택하는지 확인하십시오.
  • 하나의 Conda 채널에서만 패키지를 원하는 경우 불필요한 종속성 검사를 방지하려면 템플리트의 채널 목록에서 defaults을(를) 제거하고 nodefaults을(를) 추가하여 기본 채널을 제외하십시오.
  • Anaconda 기본 채널 외에도 Anaconda의 R 채널에서도 R을 위한 많은 패키지들이 발견될 수 있습니다. R 환경에서 이 채널은 이미 기본 채널의 일부이므로 별도로 추가할 필요가 없습니다.
  • pip를 통해서만 또는 conda를 통해서만 사용자 정의 템플리트에 패키지를 추가하는 경우 dependencies 가 템플리트에서 주석 처리되지 않았는지 확인해야 합니다.
  • 패키지 버전을 지정할 때 conda 패키지에는 단일 =을(를) 사용하고 pip 패키지에는 ==을(를) 사용하십시오. 가능한 곳이면 어디서나 버전 번호를 지정하십시오. 그러면 설치 시간 및 메모리 소요량이 현저히 감소합니다. 버전을 지정하지 않으면 패키지 관리자가 사용 가능한 최신 버전을 선택하거나 패키지에서 사용 가능한 버전을 유지할 수 있습니다.
  • 노트북 확장은 미리 설치되어야 하므로 사용자 정의로서 임의의 노트북 확장을 추가할 수 없습니다.

자세히 알아보기

상위 주제: 계산 자원 관리

일반적인 AI 검색 및 응답
이러한 응답은 제품 문서의 컨텐츠를 기반으로 하는 watsonx.ai 의 대형 언어 모델에 의해 생성됩니다. 자세히 알아보기