About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 07, 2025
Description
Because generative models tend to produce output like the input provided, the model can be prompted to reveal specific kinds of information. For example, adding personal information in the prompt increases its likelihood of generating similar kinds of personal information in its output. If personal data was included as part of the model’s training, there is a possibility it could be revealed.
Why is prompt priming a concern for foundation models?
Jailbreaking attacks can be used to alter model behavior and benefit the attacker.
Parent topic: AI risk atlas
We provide examples covered by the press to help explain many of the foundation models' risks. Many of these events covered by the press are either still evolving or have been resolved, and referencing them can help the reader understand the potential risks and work towards mitigations. Highlighting these examples are for illustrative purposes only.