Über den Einsatz von Cookies auf dieser Website Unsere Websites benötigen einige Cookies, um ordnungsgemäß zu funktionieren (erforderlich). Darüber hinaus können mit Ihrer Zustimmung weitere Cookies verwendet werden, um die Nutzung der Website zu analysieren, die Benutzerfreundlichkeit zu verbessern und Werbung zu schalten. Weitere Informationen finden Sie in Ihren. Durch den Besuch unserer Website erklären Sie sich mit der Verarbeitung von Informationen einverstanden, wie in der IBMDatenschutzbestimmung beschrieben. Um eine reibungslose Navigation zu ermöglichen, werden Ihre Cookie-Präferenzen über die hier aufgeführten IBM Web-Domains hinweg gemeinsam genutzt.
Mangel an Trainingsdaten - Transparenzrisiko für KI
Letzte Aktualisierung: 10. Feb. 2025
Beschreibung
Ohne genaue Dokumentation, wie die Daten eines Modells erfasst, kuratiert und zum Trainieren eines Modells verwendet wurden, kann es schwieriger sein, das Verhalten des Modells in Bezug auf die Daten zufriedenstellend zu erklären.
Warum ist die mangelnde Transparenz der Trainingsdaten ein Problem für Stiftungsmodelle?
Eine fehlende Datendokumentation schränkt die Möglichkeit ein, die mit den Daten verbundenen Risiken zu bewerten. Es reicht nicht aus, Zugang zu den Trainingsdaten zu haben. Wenn nicht aufgezeichnet wird, wie die Daten bereinigt, geändert oder generiert wurden, ist das Verhalten des Modells schwieriger zu verstehen und zu korrigieren. Mangelnde Datentransparenz wirkt sich auch auf die Wiederverwendung von Modellen aus, da es ohne eine solche Dokumentation schwierig ist, die Repräsentativität der Daten für eine neue Verwendung zu bestimmen.

Beispiel
Offenlegung von Daten-und Modellmetadaten
OpenAI‘s ist ein Beispiel für den Zwiespalt bei der Offenlegung von Daten und Modellmetadaten. Während viele Modellentwickler Wert darauf legen, Transparenz für Verbraucher zu ermöglichen, stellt die Offenlegung echte Sicherheitsprobleme dar und könnte die Fähigkeit erhöhen, die Modelle zu missbrauchen. Im technischen Bericht GPT-4 stellen die Autoren fest: "In Anbetracht des Wettbewerbsumfelds und der sicherheitstechnischen Auswirkungen groß angelegter Modelle wie GPT-4 enthält dieser Bericht keine weiteren Einzelheiten über die Architektur (einschließlich der Modellgröße), die Hardware, die Trainingsberechnung, den Aufbau des Datensatzes, die Trainingsmethode oder ähnliches."
Quellen:
Übergeordnetes Thema: AI-Risikoatlas
Wir stellen Beispiele vor, die von der Presse abgedeckt werden, um viele der Risiken der Fundamentmodelle zu erklären. Viele dieser Ereignisse, die von der Presse abgedeckt werden, entwickeln sich entweder noch weiter oder wurden gelöst, und ihre Bezugnahme kann dem Leser helfen, die potenziellen Risiken zu verstehen und auf Minderungen hinzuarbeiten. Die Hervorhebung dieser Beispiele dient nur zur Veranschaulichung.
War das Thema hilfreich?
0/1000