About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 07, 2025
Description
Data provenance refers to tracing history of data, which includes its ownership, origin, and transformations. Without standardized and established methods for verifying where the data came from, there are no guarantees that the data is the same as the original source and has the correct usage terms.
Why is uncertain data provenance a concern for foundation models?
Not all data sources are trustworthy. Data might be unethically collected, manipulated, or falsified. Verifying that data provenance is challenging due to factors such as data volume, data complexity, data source varieties, and poor data management. Using such data can result in undesirable behaviors in the model.
Parent topic: AI risk atlas
We provide examples covered by the press to help explain many of the foundation models' risks. Many of these events covered by the press are either still evolving or have been resolved, and referencing them can help the reader understand the potential risks and work towards mitigations. Highlighting these examples are for illustrative purposes only.