About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 11, 2025
You use the Streaming Time Series node to build and score time series models in one step. A separate time series model is built for each target field, however model nuggets are not added to the generated models palette and the model information cannot be browsed.
Methods for modeling time series data require a uniform interval between each measurement, with any missing values indicated by empty rows. If your data does not already meet this requirement, you need to transform values as needed.
Other points of interest regarding Time Series nodes:
- Fields must be numeric.
- Date fields cannot be used as inputs.
- Partitions are ignored.
The Streaming Time Series node estimates exponential smoothing, univariate Autoregressive Integrated Moving Average (ARIMA), and multivariate ARIMA (or transfer function) models for time series and produces forecasts based on the time series data. Also available is an Expert Modeler, which attempts to automatically identify and estimate the best-fitting ARIMA or exponential smoothing model for one or more target fields.