The Text Link Analysis (TLA) node adds pattern-matching technology to text mining's
concept extraction in order to identify relationships between the concepts in the text data based on
known patterns. These relationships can describe how a customer feels about a product, which
companies are doing business together, or even the relationships between genes or pharmaceutical
agents.
For example, extracting your competitor’s product name may not be interesting
enough to you. Using this node, you could also learn how people feel about this product, if such
opinions exist in the data. The relationships and associations are identified and extracted by
matching known patterns to your text data.
You can use the TLA pattern rules inside certain resource templates shipped
with Text Analytics or create/edit your own. Pattern rules are made up of macros, word lists, and
word gaps to form a Boolean query, or rule, that is compared to your input text. Whenever a TLA
pattern rule matches text, this text can be extracted as a TLA result and restructured as output
data.
The Text Link Analysis node offers a more direct way to identify and extract
TLA pattern results from your text and then add the results to the dataset in the flow. But the Text
Link Analysis node is not the only way in which you can perform text link analysis. You can also use
a Text Analytics Workbench session in the Text Mining modeling node.
The output can be represented in up to 6 slots, or parts.
You can find this node under the Text Analytics section of the node palette.
Requirements. The Text Link Analysis node accepts text
data read into a field using an Import
node.
Strengths. The Text Link Analysis node goes beyond
basic concept extraction to provide information about the relationships between concepts, as
well as related opinions or qualifiers that may be revealed in the data.
About cookies on this siteOur websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising.For more information, please review your cookie preferences options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.