About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 11, 2025
The Synthetic Minority Over-sampling Technique (SMOTE) node provides an over-sampling algorithm to deal with imbalanced data sets. It provides an advanced method for balancing data. The SMOTE node in watsonx.ai Studio is implemented in Python and requires the imbalanced-learn© Python library.
For details about the imbalanced-learn library, see imbalanced-learn documentation1.
The Modeling tab on the nodes palette contains the SMOTE node and other Python nodes.
1Lemaître, Nogueira, Aridas. "Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning." Journal of Machine Learning Research, vol. 18, no. 17, 2017, pp. 1-5. (http://jmlr.org/papers/v18/16-365.html)