Compute을(를) 사용하는 경우, 시스템은 각 예측변수에 대한 예측 기간의 미래 값을 계산합니다.
각 예측변수에 대해 함수 목록에서 선택할 수 있습니다(공백, 최근 지점의 평균, 가장 최근 값). 또는 specify을(를) 사용하여 수동으로 값을 입력할 수 있습니다. 개별 필드 및 특성을 지정하려면 extend_metric_values 특성을 사용하십시오. 예를 들어,
set :ts.futureValue_type_method="specify"
set :ts.extend_metric_values=[{'Market_1','USER_SPECIFY', [1,2,3]},
{'Market_2','MOST_RECENT_VALUE', ''},{'Market_3','RECENT_POINTS_MEAN', ''}]
exsmooth_transformation_type
None SquareRoot NaturalLog
arima.p
정수
arima.d
정수
arima.q
정수
arima.sp
정수
arima.sd
정수
arima.sq
정수
arima_transformation_type
None SquareRoot NaturalLog
arima_include_constant
플래그
tf_arima.p.필드 이름
정수
전이 함수용입니다.
tf_arima.d.필드 이름
정수
전이 함수용입니다.
tf_arima.q.필드 이름
정수
전이 함수용입니다.
tf_arima.sp.필드 이름
정수
전이 함수용입니다.
tf_arima.sd.필드 이름
정수
전이 함수용입니다.
tf_arima.sq.필드 이름
정수
전이 함수용입니다.
tf_arima.delay.필드 이름
정수
전이 함수용입니다.
tf_arima.transformation_type.필드 이름
None SquareRoot NaturalLog
전이 함수용입니다.
arima_detect_outliers
플래그
arima_outlier_additive
플래그
arima_outlier_level_shift
플래그
arima_outlier_innovational
플래그
arima_outlier_transient
플래그
arima_outlier_seasonal_additive
플래그
arima_outlier_local_trend
플래그
arima_outlier_additive_patch
플래그
max_lags
정수
cal_PI
플래그
conf_limit_pct
실수
events
필드
continue
플래그
scoring_model_only
플래그
매우 많은
시계열 수(수만 개)가 있는 모델에 사용합니다.
forecastperiods
정수
extend_records_into_future
플래그
extend_metric_values
필드
예측자의 미래 값을 제공할 수 있습니다.
conf_limits
플래그
noise_res
플래그
max_models_output
정수
출력에 표시될 모델 수를 제어합니다. 기본값은 10입니다. 작성된
총 모델 수가 이 값을 초과할 경우 모델이 출력에 표시되지 않습니다. 여전히
모델을 스코어링에 사용할 수 있습니다.
missing_value_threshold
이중 실선
각 시계열에 대한 시간 변수 및 입력 데이터에 대한 데이터 품질 측도를 계산합니다. 데이터 품질 점수가 이 임계값보다 낮으면 해당 시계열이 버려집니다.
compute_future_values_input
부울
False: 입력의 미래 값을 계산합니다. True: 데이터에 추가할 값이 있는 필드를 선택하십시오.
주제가 도움이 되었습니까?
0/1000
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Cloud Pak for Data relationship map
Use this interactive map to learn about the relationships between your tasks, the tools you need, the services that provide the tools, and where you use the tools.
Select any task, tool, service, or workspace
You'll learn what you need, how to get it, and where to use it.
Tasks you'll do
Some tasks have a choice of tools and services.
Tools you'll use
Some tools perform the same tasks but have different features and levels of automation.
Create a notebook in which you run Python, R, or Scala code to prepare, visualize, and analyze data, or build a model.
Automatically analyze your tabular data and generate candidate model pipelines customized for your predictive modeling problem.
Create a visual flow that uses modeling algorithms to prepare data and build and train a model, using a guided approach to machine learning that doesn’t require coding.
Create and manage scenarios to find the best solution to your optimization problem by comparing different combinations of your model, data, and solutions.
Create a flow of ordered operations to cleanse and shape data. Visualize data to identify problems and discover insights.
Automate the model lifecycle, including preparing data, training models, and creating deployments.
Work with R notebooks and scripts in an integrated development environment.
Create a federated learning experiment to train a common model on a set of remote data sources. Share training results without sharing data.
Deploy and run your data science and AI solutions in a test or production environment.
Find and share your data and other assets.
Import asset metadata from a connection into a project or a catalog.
Enrich imported asset metadata with business context, data profiling, and quality assessment.
Measure and monitor the quality of your data.
Create and run masking flows to prepare copies of data assets that are masked by advanced data protection rules.
Create your business vocabulary to enrich assets and rules to protect data.
Track data movement and usage for transparency and determining data accuracy.
Track AI models from request to production.
Create a flow with a set of connectors and stages to transform and integrate data. Provide enriched and tailored information for your enterprise.
Create a virtual table to segment or combine data from one or more tables.
Measure outcomes from your AI models and help ensure the fairness, explainability, and compliance of all your models.
Replicate data to target systems with low latency, transactional integrity and optimized data capture.
Consolidate data from the disparate sources that fuel your business and establish a single, trusted, 360-degree view of your customers.
Services you can use
Services add features and tools to the platform.
Develop powerful AI solutions with an integrated collaborative studio and industry-standard APIs and SDKs. Formerly known as Watson Studio.
Quickly build, run and manage generative AI and machine learning applications with built-in performance and scalability. Formerly known as Watson Machine Learning.
Discover, profile, catalog, and share trusted data in your organization.
Create ETL and data pipeline services for real-time, micro-batch, and batch data orchestration.
View, access, manipulate, and analyze your data without moving it.
Monitor your AI models for bias, fairness, and trust with added transparency on how your AI models make decisions.
Provide efficient change data capture and near real-time data delivery with transactional integrity.
Improve trust in AI pipelines by identifying duplicate records and providing reliable data about your customers, suppliers, or partners.
Increase data pipeline transparency so you can determine data accuracy throughout your models and systems.
Where you'll work
Collaborative workspaces contain tools for specific tasks.
Where you work with data.
> Projects > View all projects
Where you find and share assets.
> Catalogs > View all catalogs
Where you deploy and run assets that are ready for testing or production.
> Deployments
Where you manage governance artifacts.
> Governance > Categories
Where you virtualize data.
> Data > Data virtualization
Where you consolidate data into a 360 degree view.