0 / 0
slrmnode properties
Last updated: Jan 18, 2024
slrmnode properties

SLRM ode iconThe Self-Learning Response Model (SLRM) node enables you to build a model in which a single new case, or small number of new cases, can be used to reestimate the model without having to retrain the model using all data.

Example

node = stream.create("slrm", "My node")
node.setPropertyValue("target", "Offer") 
node.setPropertyValue("target_response", "Response")
node.setPropertyValue("inputs", ["Cust_ID", "Age", "Ave_Bal"])
Table 1. slrmnode properties
slrmnode Properties Values Property description
target field The target field must be a nominal or flag field. A frequency field can also be specified. See Common modeling node properties for more information.
target_response field Type must be flag.
continue_training_existing_model flag  
target_field_values flag Use all: Use all values from source. Specify: Select values required.
target_field_values_specify [field1 ... fieldN]  
include_model_assessment flag  
model_assessment_random_seed number Must be a real number.
model_assessment_sample_size number Must be a real number.
model_assessment_iterations number Number of iterations.
display_model_evaluation flag  
max_predictions number  
randomization number  
scoring_random_seed number  
sort Ascending Descending Specifies whether the offers with the highest or lowest scores will be displayed first.
model_reliability flag  
calculate_variable_importance flag  
Generative AI search and answer
These answers are generated by a large language model in watsonx.ai based on content from the product documentation. Learn more