Last updated: Jan 18, 2024
Linear regression models predict a continuous target based on linear relationships between the target and one or more predictors.
Example
node = stream.create("linear", "My node")
# Build Options tab - Objectives panel
node.setPropertyValue("objective", "Standard")
# Build Options tab - Model Selection panel
node.setPropertyValue("model_selection", "BestSubsets")
node.setPropertyValue("criteria_best_subsets", "ASE")
# Build Options tab - Ensembles panel
node.setPropertyValue("combining_rule_categorical", "HighestMeanProbability")
linearnode Properties |
Values | Property description |
---|---|---|
target
|
field | Specifies a single target field. |
inputs
|
[field1 ... fieldN] | Predictor fields used by the model. |
continue_training_existing_model
|
flag | |
objective
|
Standard Bagging Boosting psm |
psm is used for very large datasets, and requires a server
connection. |
use_auto_data_preparation
|
flag | |
confidence_level
|
number | |
model_selection
|
ForwardStepwise BestSubsets None |
|
criteria_forward_stepwise
|
AICC Fstatistics AdjustedRSquare ASE |
|
probability_entry
|
number | |
probability_removal
|
number | |
use_max_effects
|
flag | |
max_effects
|
number | |
use_max_steps
|
flag | |
max_steps
|
number | |
criteria_best_subsets
|
AICC AdjustedRSquare ASE |
|
combining_rule_continuous
|
Mean Median |
|
component_models_n
|
number | |
use_random_seed
|
flag | |
random_seed
|
number | |
use_custom_model_name
|
flag | |
custom_model_name
|
string | |
use_custom_name
|
flag | |
custom_name
|
string | |
tooltip
|
string | |
keywords
|
string | |
annotation
|
string | |
perform_model_effect_tests
|
boolean | Perform model effect tests for each regression effect. |
confidence_level
|
double | This is the interval of confidence used to compute estimates of the model coefficients. Specify a value greater than 0 and less than 100. The default is 95. |
probability_entry
|
double | If F Statistics is chosen as the criterion, then at each step the effect that has the smallest p-value less than the specified threshold is added to the model (include effects with p-values less than). The default is 0.05. |
probability_removal
|
double | Any effects in the model with a p-value greater than the specified threshold are removed (remove effects with p-values greater than). The default is 0.10. |