0 / 0
gle properties
Last updated: Jan 17, 2024
gle properties

GLE node iconA GLE extends the linear model so that the target can have a non-normal distribution, is linearly related to the factors and covariates via a specified link function, and so that the observations can be correlated. Generalized linear mixed models cover a wide variety of models, from simple linear regression to complex multilevel models for non-normal longitudinal data.

Table 1. gle properties
gle Properties Values Property description
custom_target flag Indicates whether to use target defined in upstream node (false) or custom target specified by target_field (true).
target_field field Field to use as target if custom_target is true.
use_trials flag Indicates whether additional field or value specifying number of trials is to be used when target response is a number of events occurring in a set of trials. Default is false.
use_trials_field_or_value
Field
Value
Indicates whether field (default) or value is used to specify number of trials.
trials_field field Field to use to specify number of trials.
trials_value integer Value to use to specify number of trials. If specified, minimum value is 1.
use_custom_target_reference flag Indicates whether custom reference category is to be used for a categorical target. Default is false.
target_reference_value string Reference category to use if use_custom_target_reference is true.
dist_link_combination
NormalIdentity
GammaLog
PoissonLog
NegbinLog
TweedieIdentity
NominalLogit
BinomialLogit
BinomialProbit
BinomialLogC
CUSTOM
Common models for distribution of values for target. Choose CUSTOM to specify a distribution from the list provided by target_distribution.
target_distribution
Normal
Binomial
Multinomial
Gamma
INVERSE_GAUSS
NEG_BINOMIAL
Poisson
TWEEDIE
UNKNOWN
Distribution of values for target when dist_link_combination is Custom.
link_function_type
UNKNOWN
IDENTITY
LOG
LOGIT
PROBIT
COMPL_LOG_LOG
POWER
LOG_COMPL
NEG_LOG_LOG
ODDS_POWER
NEG_BINOMIAL
GEN_LOGIT
CUMUL_LOGIT
CUMUL_PROBIT
CUMUL_COMPL_LOG_LOG
CUMUL_NEG_LOG_LOG
CUMUL_CAUCHIT
Link function to relate target values to predictors. If target_distribution is Binomial you can use:
UNKNOWNIDENTITYLOGLOGITPROBITCOMPL_LOG_LOGPOWERLOG_COMPLNEG_LOG_LOGODDS_POWER
If target_distribution is NEG_BINOMIAL you can use:
NEG_BINOMIAL
If target_distribution is UNKNOWN, you can use:
GEN_LOGITCUMUL_LOGITCUMUL_PROBITCUMUL_COMPL_LOG_LOGCUMUL_NEG_LOG_LOGCUMUL_CAUCHIT
link_function_param number Tweedie parameter value to use. Only applicable if normal_link_function or link_function_type is POWER.
tweedie_param number Link function parameter value to use. Only applicable if dist_link_combination is set to TweedieIdentity, or link_function_type is TWEEDIE.
use_predefined_inputs flag Indicates whether model effect fields are to be those defined upstream as input fields (true) or those from fixed_effects_list (false).
model_effects_list structured If use_predefined_inputs is false, specifies the input fields to use as model effect fields.
use_intercept flag If true (default), includes the intercept in the model.
regression_weight_field field Field to use as analysis weight field.
use_offset
None
Value
Variable
Indicates how offset is specified. Value None means no offset is used.
offset_value number Value to use for offset if use_offset is set to offset_value.
offset_field field Field to use for offset value if use_offset is set to offset_field.
target_category_order
Ascending
Descending
Sorting order for categorical targets. Default is Ascending.
inputs_category_order
Ascending
Descending
Sorting order for categorical predictors. Default is Ascending.
max_iterations integer Maximum number of iterations the algorithm will perform. A non-negative integer; default is 100.
confidence_level number Confidence level used to compute interval estimates of the model coefficients. A non-negative integer; maximum is 100, default is 95.
test_fixed_effects_coeffecients
Model
Robust
Method for computing the parameter estimates covariance matrix.
detect_outliers flag When true the algorithm finds influential outliers for all distributions except multinomial distribution.
conduct_trend_analysis flag When true the algorithm conducts trend analysis for the scatter plot.
estimation_method
FISHER_SCORING
NEWTON_RAPHSON
HYBRID
Specify the maximum likelihood estimation algorithm.
max_fisher_iterations integer If using the FISHER_SCORING estimation_method, the maximum number of iterations. Minimum 0, maximum 20.
scale_parameter_method
MLE
FIXED
DEVIANCE
PEARSON_CHISQUARE
Specify the method to be used for the estimation of the scale parameter.
scale_value number Only available if scale_parameter_method is set to Fixed.
negative_binomial_method
MLE
FIXED
Specify the method to be for the estimation of the negative binomial ancillary parameter.
negative_binomial_value number Only available if negative_binomial_method is set to Fixed.
use_p_converge flag Option for parameter convergence.
p_converge number Blank, or any positive value.
p_converge_type flag True = Absolute, False = Relative
use_l_converge flag Option for log-likelihood convergence.
l_converge number Blank, or any positive value.
l_converge_type flag True = Absolute, False = Relative
use_h_converge flag Option for Hessian convergence.
h_converge number Blank, or any positive value.
h_converge_type flag True = Absolute, False = Relative
max_iterations integer Maximum number of iterations the algorithm will perform. A non-negative integer; default is 100.
sing_tolerance integer  
use_model_selection flag Enables the parameter threshold and model selection method controls..
method
LASSO

ELASTIC_NET

FORWARD_STEPWISE

RIDGE
Determines the model selection method, or if using Ridge the regularization method, used.
detect_two_way_interactions flag When True the model will automatically detect two-way interactions between input fields. This control should only be enabled if the model is main effects only (that is, where the user has not created any higher order effects) and if the method selected is Forward Stepwise, Lasso, or Elastic Net.
automatic_penalty_params flag Only available if model selection method is Lasso or Elastic Net. Use this function to enter penalty parameters associated with either the Lasso or Elastic Net variable selection methods. If True, default values are used. If False, the penalty parameters are enabled custom values can be entered.
lasso_penalty_param number Only available if model selection method is Lasso or Elastic Net and automatic_penalty_params is False. Specify the penalty parameter value for Lasso.
elastic_net_penalty_param1 number Only available if model selection method is Lasso or Elastic Net and automatic_penalty_params is False. Specify the penalty parameter value for Elastic Net parameter 1.
elastic_net_penalty_param2 number Only available if model selection method is Lasso or Elastic Net and automatic_penalty_params is False. Specify the penalty parameter value for Elastic Net parameter 2.
probability_entry number Only available if the method selected is Forward Stepwise. Specify the significance level of the f statistic criterion for effect inclusion.
probability_removal number Only available if the method selected is Forward Stepwise. Specify the significance level of the f statistic criterion for effect removal.
use_max_effects flag Only available if the method selected is Forward Stepwise. Enables the max_effects control. When False the default number of effects included should equal the total number of effects supplied to the model, minus the intercept.
max_effects integer Specify the maximum number of effects when using the forward stepwise building method.
use_max_steps flag Enables the max_steps control. When False the default number of steps should equal three times the number of effects supplied to the model, excluding the intercept.
max_steps integer Specify the maximum number of steps to be taken when using the Forward Stepwise building method.
use_model_name flag Indicates whether to specify a custom name for the model (true) or to use the system-generated name (false). Default is false.
model_name string If use_model_name is true, specifies the model name to use.
usePI flag If true, predictor importance is calculated..
perform_model_effect_tests boolean Whether to perform model effect tests.
non_neg_least_squares integer Whether to perform non-negative least squares.