About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 11, 2025
The PCA/Factor node provides powerful data-reduction
techniques to reduce the complexity of your data. Principal components analysis (PCA) finds linear
combinations of the input fields that do the best job of capturing the variance in the entire set of
fields, where the components are orthogonal (perpendicular) to each other. Factor analysis attempts
to identify underlying factors that explain the pattern of correlations within a set of observed
fields. For both approaches, the goal is to find a small number of derived fields that effectively
summarizes the information in the original set of fields.
Example
node = stream.create("factor", "My node")
# "Fields" tab
node.setPropertyValue("custom_fields", True)
node.setPropertyValue("inputs", ["BP", "Na", "K"])
node.setPropertyValue("partition", "Test")
# "Model" tab
node.setPropertyValue("use_model_name", True)
node.setPropertyValue("model_name", "Factor_Age")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("method", "GLS")
# Expert options
node.setPropertyValue("mode", "Expert")
node.setPropertyValue("complete_records", True)
node.setPropertyValue("matrix", "Covariance")
node.setPropertyValue("max_iterations", 30)
node.setPropertyValue("extract_factors", "ByFactors")
node.setPropertyValue("min_eigenvalue", 3.0)
node.setPropertyValue("max_factor", 7)
node.setPropertyValue("sort_values", True)
node.setPropertyValue("hide_values", True)
node.setPropertyValue("hide_below", 0.7)
# "Rotation" section
node.setPropertyValue("rotation", "DirectOblimin")
node.setPropertyValue("delta", 0.3)
node.setPropertyValue("kappa", 7.0)
Properties |
Values | Property description |
---|---|---|
|
[field1 ... fieldN] | PCA/Factor models use a list of input fields, but no target. Weight and frequency fields are not used. See Common modeling node properties for more information. |
|
|
|
|
|
|
|
number | |
|
flag | |
|
|
|
|
|
|
|
number | |
|
number | |
|
|
|
|
number | If you select as your rotation data type, you can specify a
value for .
If you don't specify a value, the default value for
is used. |
|
number | If you select as your rotation data type, you can specify a value for
.
If you don't specify a value, the default value for
is used. |
|
flag | |
|
flag | |
|
number |
Was the topic helpful?
0/1000