Last updated: Jan 18, 2024
Discriminant analysis makes more stringent assumptions than logistic regression, but can be a valuable alternative or supplement to a logistic regression analysis when those assumptions are met.
Example
node = stream.create("discriminant", "My node")
node.setPropertyValue("target", "custcat")
node.setPropertyValue("use_partitioned_data", False)
node.setPropertyValue("method", "Stepwise")
discriminantnode Properties |
Values | Property description |
---|---|---|
target
|
field | Discriminant models require a single target field and one or more input fields. Weight and frequency fields aren't used. See Common modeling node properties for more information. |
method
|
Enter
Stepwise
|
|
mode
|
Simple
Expert
|
|
prior_probabilities
|
AllEqual
ComputeFromSizes
|
|
covariance_matrix
|
WithinGroups
SeparateGroups
|
|
means
|
flag | Statistics options in the node properties under Expert Options. |
univariate_anovas
|
flag | |
box_m
|
flag | |
within_group_covariance
|
flag | |
within_groups_correlation
|
flag | |
separate_groups_covariance
|
flag | |
total_covariance
|
flag | |
fishers
|
flag | |
unstandardized
|
flag | |
casewise_results
|
flag | Classification options in the node properties under Expert Options. |
limit_to_first
|
number | Default value is 10. |
summary_table
|
flag | |
leave_one_classification
|
flag | |
separate_groups_covariance
|
flag | Matrices option Separate-groups covariance. |
territorial_map
|
flag | |
combined_groups
|
flag | Plot option Combined-groups. |
separate_groups
|
flag | Plot option Separate-groups. |
summary_of_steps
|
flag | |
F_pairwise
|
flag | |
stepwise_method
|
WilksLambda
UnexplainedVariance
MahalanobisDistance
SmallestF
RaosV
|
|
V_to_enter
|
number | |
criteria
|
UseValue
UseProbability
|
|
F_value_entry
|
number | Default value is 3.84. |
F_value_removal
|
number | Default value is 2.71. |
probability_entry
|
number | Default value is 0.05. |
probability_removal
|
number | Default value is 0.10. |
calculate_variable_importance
|
flag | |
calculate_raw_propensities
|
flag | |
calculate_adjusted_propensities
|
flag | |
adjusted_propensity_partition
|
Test
Validation
|