About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Last updated: Feb 11, 2025
A Gaussian Mixture© model is a probabilistic model that assumes all the data points are generated from a mixture of a finite number of Gaussian distributions with unknown parameters.
One can think of mixture models as generalizing k-means clustering to incorporate information about the covariance structure of the data as well as the centers of the latent Gaussians.1
The Gaussian Mixture node in watsonx.ai Studio exposes the core features and commonly used parameters of the Gaussian Mixture library. The node is implemented in Python.
For more information about Gaussian Mixture modeling algorithms and parameters, see Gaussian Mixture Models and Gaussian Mixture. 2
1 "User Guide." Gaussian mixture models. Web. © 2007 - 2017. scikit-learn developers.
2 Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
Was the topic helpful?
0/1000