You can invoke native Python APIs from your scripts to interact with SPSS Modeler.
The following APIs are supported.
To see an example, you can download the stream available here and import it into SPSS Modeler (from your project, click New asset, select SPSS Modeler, then select Local file). Then open the Extension node properties in the flow to see example syntax.
APIs for data models
modelerpy.isComputeDataModelOnly()
You can use this API to check whether a current run is to compute the output data or only compute the output data model. When it returns
true
, your script must not perform any task that depends on input or output data, otherwise the run will fail.modelerpy.getDataModel()
This API contacts SPSS Modeler to get the data model for an input dataset. The return value is an instance of
class DataModel
which describes metadata of the input dataset, including field count, field name, field storage type, etc.modelerpy.setOutputDataModel(dataModel)
This API sends an instance of class
DataModel
back to SPSS Modeler, and must be invoked before your script passes a dataset to SPSS Modeler. SPSS Modeler will use the metadata described in thisDataModel
instance to handle your data on the SPSS Modeler side.
APIs for modeling
modelerpy.saveModel(model, name='model', compress=False)
This API transforms a Python model into an SPSS Modeler model, which is then saved by SPSS Modeler. You should invoke this API from a modeling node when a Python model is built. After invoking this API, the saved model is copied to a generated model nugget.
modelerpy.loadModel(name='model')
This API loads an SPSS Modeler saved model and creates a Python object for the saved model. Invoke this API from the model nugget to load the saved model for further processing, such as scoring.
APIs for input/output datasets
modelerpy.readPandasDataframe()
This API reads a dataset from SPSS Modeler to Python. The return value is a Python Pandas DataFrame (a two-dimensional data structure, like a two-dimensional array, or a table with rows and columns).
modelerpy.writePandasDataframe(df)
This API writes a Python Pandas DataFrame from Python to SPSS Modeler.
APIs for packages
modelerpy.installPackage(package)
This API pulls a package from
pypi.org
and installs it.modelerpy.uninstallPackage(package)
This API uninstalls an installed package.
APIs for metadata
The following metadata-related classes should be used withmodelerpy.getDataModel
and modelerpy.setOutputDataModel
.modelerpy.DataModel
This API is the main entry class for the metadata. It contains an array of instances of
class Field
and includes the following methodsmodelerpy.DataModel.getFields
This method returns the array of
class Field
instances.modelerpy.DataModel.addField
This method adds an instance of
Field
to the metadata array.modelerpy.Field
The
Field
class is where the actual metadata info is stored, including the field name, storage, and measurement,modelerpy.Field.getName
This method returns the name of the field.
modelerpy.Field.getStorage
This method returns the storage of the field. Valid storage includes:
integer
,real
,string
,date
,time
, andtimestamp
.modelerpy.Field.getMeasure
This method returns the measurement of the field. Valid measurements include:
discrete
,flag
,nominal
,ordinal
, andcontinuous
.
DataModel
object by invoking the
modelerpy.DataModel
constructor with an array of modelerpy.Field
.
The modelerpy.Field
constructor accepts field name, field storage, and field
measurement as its input parameters (field storage and field measurement are required; field
measurement is optional).dataModel = modelerpy.DataModel([
# %FieldName%, %StorageType%, %MeasurementType%
modelerpy.Field(‘StringField’, ‘string’, ‘nominal’),
modelerpy.Field(‘FloatField’, ‘real’, ‘continuous’),
modelerpy.Field(‘IntegerField’, ‘integer’, ‘ordinal’),
modelerpy.Field(‘BooleanField’, ‘integer’, ‘flag’),
modelerpy.Field(‘DatetimeField’, ‘timestamp’, ‘continuous’),
modelerpy.Field(‘TimeField’, ‘time’, ‘continuous’),
modelerpy.Field(‘DateField’, ‘date’, ‘continuous’),
])
# StorageType could be: integer, real, string, date, time, timestamp
# MeasurementType could be: discrete, flag, nominal, ordinal, continuous
outputDataModel = modelerDataModel
outputDataModel.addField(modelerpy.Field(field_outlier, "real", measure="flag"))
outputDataModel.addField(modelerpy.Field(field_dist_hp, "real", measure="continuous"))