watsonx.ai Studio sur " Cloud Pak for Data as a Service
Dernière mise à jour : 21 févr. 2025
watsonx.ai Studio sur Cloud Pak for Data as a Service
Descriptif
Copy link to section
IBM
watsonx.ai Studio est l'un des services de base dans Cloud Pak for Data as a Service.
Le service " watsonx.ai Studio " était auparavant connu sous le nom de service " Watson Studio
watsonx.ai Studio fait partie de Cloud Pak for Data as a Service et fournit les fonctions de science des données de l'architecture de matrice de données.
watsonx.ai Studio fournit l'environnement et les outils qui vous permettent de travailler en collaboration sur des données afin de résoudre vos problèmes métier. Vous pouvez choisir les outilsdont vous avez besoin pour analyser et visualiser des données, nettoyer et mettre en forme des données, ingérer des flux de données en continu, ou créer et entraîner des modèles d'apprentissage automatique.
L'architecture de watsonx.ai Studio est centrée autour du projet. Un projet est l'espace de travail où vous organisez vos ressources et utilisez des données.
Vous pouvez utiliser les types de ressources suivantes dans un projet :
Les collaborateurs sont des membres de l'équipe qui utilisent les données. Les tâches incombant aux spécialiste des données comprennent
l'analyse des données et la construction de modèles. Celles des ingénieurs données comprennent la préparation des données et leur intégration.
Les actifs de données pointent vers des données stockées dans des fichiers importés ou accessibles via des connexions à des sources de données.
Les actifs opérationnels sont les objets que vous créez, tels que les scripts et les modèles, pour exécuter le code sur les données.
Autres types d'actifs qui fournissent des composants, des modèles ou d'autres informations.
Les outils sont des logiciels que vous utilisez pour extraire des informations des données. Ces outils sont inclus avec le service watsonx.ai Studio :
Data Refinery : Permet de préparer et de visualiser des données.
Editeur de bloc-notes Jupyter : Permet de coder des blocs-notes Jupyter.
RStudio® : Code Jupyter notebooks in R and R Shiny apps.
SPSS Modeler : automatise le flot de données traversant un modèle avec des algorithmes SPSS.
Constructeur de modèle Decision Optimization : optimise la résolution de problèmes dans divers scénarios métier. D'autres outils de projet nécessitent des services supplémentaires. Consultez les listes des services supplémentaires et liés à .
Apprentissage fédéré: entraînez des modèles sur des parties distantes sans partager de données.
Pipelines: Automatisation des flux de bout en bout de données ou de modèles.
Les projets watsonx.ai Studio sont entièrement intégrés aux catalogues et aux espaces de déploiement:
Les catalogues sont fournis par le service Watson Knowledge Catalog.
Vous pouvez facilement déplacer des actifs entre des projets et des catalogues.
Les catalogues et les projets prennent en charge les mêmes types d'actifs de données.
Les règles de protection des données sont appliquées sur les actifs de catalogue que vous ajoutez aux projets.
Espaces de déploiement permettant d'afficher et de gérer des modèles et d'autres types de déploiement.
Vous pouvez facilement déplacer des actifs entre des projets et des espaces de déploiement.
Tableau 2. Services connexes. Les services connexes suivants sont souvent utilisés avec ce service et fournissent des fonctions complémentaires, mais ils ne sont pas requis.
Créez, formez et déployez des modèles d'apprentissage automatique avec une gamme complète d'outils.
Sources de données compatibles
Copy link to section
Voir Connecteurs pour obtenir la liste des services de source de données compatibles.
La rubrique a-t-elle été utile ?
Oui
Non
Informations manquantes
Informations incorrectes
Informations confuses
Lien rompu
Autre
Précédent
0/1000
Envoyer un commentaire
Précédent
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Cloud Pak for Data relationship map
Use this interactive map to learn about the relationships between your tasks, the tools you need, the services that provide the tools, and where you use the tools.
Select any task, tool, service, or workspace
You'll learn what you need, how to get it, and where to use it.
Some tools perform the same tasks but have different features and levels of automation.
Jupyter notebook editor
Prepare data
Visualize data
Build models
Deploy assets
Create a notebook in which you run Python, R, or Scala code to prepare, visualize, and analyze data, or build a model.
AutoAI
Build models
Automatically analyze your tabular data and generate candidate model pipelines customized for your predictive modeling problem.
SPSS Modeler
Prepare data
Visualize data
Build models
Create a visual flow that uses modeling algorithms to prepare data and build and train a model, using a guided approach to machine learning that doesn’t require coding.
Decision Optimization
Build models
Visualize data
Deploy assets
Create and manage scenarios to find the best solution to your optimization problem by comparing different combinations of your model, data, and solutions.
Data Refinery
Prepare data
Visualize data
Create a flow of ordered operations to cleanse and shape data. Visualize data to identify problems and discover insights.
Orchestration Pipelines
Prepare data
Build models
Deploy assets
Automate the model lifecycle, including preparing data, training models, and creating deployments.
RStudio
Prepare data
Build models
Deploy assets
Work with R notebooks and scripts in an integrated development environment.
Federated learning
Build models
Create a federated learning experiment to train a common model on a set of remote data sources. Share training results without sharing data.
Deployments
Deploy assets
Monitor models
Deploy and run your data science and AI solutions in a test or production environment.
Catalogs
Catalog data
Governance
Find and share your data and other assets.
Metadata import
Prepare data
Catalog data
Governance
Import asset metadata from a connection into a project or a catalog.
Metadata enrichment
Prepare data
Catalog data
Governance
Enrich imported asset metadata with business context, data profiling, and quality assessment.
Data quality rules
Prepare data
Governance
Measure and monitor the quality of your data.
Masking flow
Prepare data
Create and run masking flows to prepare copies of data assets that are masked by advanced data protection rules.
Governance
Governance
Create your business vocabulary to enrich assets and rules to protect data.
Data lineage
Governance
Track data movement and usage for transparency and determining data accuracy.
AI factsheet
Governance
Monitor models
Track AI models from request to production.
DataStage flow
Prepare data
Create a flow with a set of connectors and stages to transform and integrate data. Provide enriched and tailored information for your enterprise.
Data virtualization
Prepare data
Create a virtual table to segment or combine data from one or more tables.
OpenScale
Monitor models
Measure outcomes from your AI models and help ensure the fairness, explainability, and compliance of all your models.
Data replication
Prepare data
Replicate data to target systems with low latency, transactional integrity and optimized data capture.
Master data
Prepare data
Consolidate data from the disparate sources that fuel your business and establish a single, trusted, 360-degree view of your customers.
Services you can use
Services add features and tools to the platform.
watsonx.ai Studio
Develop powerful AI solutions with an integrated collaborative studio and industry-standard APIs and SDKs. Formerly known as Watson Studio.
watsonx.ai Runtime
Quickly build, run and manage generative AI and machine learning applications with built-in performance and scalability. Formerly known as Watson Machine Learning.
IBM Knowledge Catalog
Discover, profile, catalog, and share trusted data in your organization.
DataStage
Create ETL and data pipeline services for real-time, micro-batch, and batch data orchestration.
Data Virtualization
View, access, manipulate, and analyze your data without moving it.
Watson OpenScale
Monitor your AI models for bias, fairness, and trust with added transparency on how your AI models make decisions.
Data Replication
Provide efficient change data capture and near real-time data delivery with transactional integrity.
Match360 with Watson
Improve trust in AI pipelines by identifying duplicate records and providing reliable data about your customers, suppliers, or partners.
Manta Data Lineage
Increase data pipeline transparency so you can determine data accuracy throughout your models and systems.
Where you'll work
Collaborative workspaces contain tools for specific tasks.
Project
Where you work with data.
> Projects > View all projects
Catalog
Where you find and share assets.
> Catalogs > View all catalogs
Space
Where you deploy and run assets that are ready for testing or production.
> Deployments
Categories
Where you manage governance artifacts.
> Governance > Categories
Data virtualization
Where you virtualize data.
> Data > Data virtualization
Master data
Where you consolidate data into a 360 degree view.