이 섹션에서는 External Source 스테이지 기능을 가져오기 위해 수행할 최소 단계를 지정합니다.
프로시저
출력 탭의 특성 섹션에서 다음 단계를 완료하십시오.
스테이지가 프로그램의 세부사항을 제공하는지(기본값) 또는 세부사항이 파일에 제공되는지 여부를 지정합니다(후자의 방법을 사용하여, 파일 및 인수 목록을 제공할 수 있음).
기본 소스 메소드를 사용하는 경우, 소스 프로그램 실행 파일의 이름을 지정하십시오. 또한 DataStage® 가 프로그램을 호출할 때 전달할 필수 인수를 지정할 수도 있습니다. 여러 프로그램 호출을 지정하려면 이 단계를 반복하십시오.
프로그램에 대한 값으로 다음 명령을 사용할 수 있습니다.
cat
tar
gzip
gunzip
mailx
sendmail
grep
sed
base64
프로그램 파일 소스 메소드를 사용하는 경우, 프로그램 이름 및 인수 목록이 포함되어 있는 파일의 이름을 지정하십시오.
소스 데이터에서 파티션을 유지보수할 것인지 여부를 지정하십시오(기본값은
False임).
거부된 행의 처리 방법을 지정하십시오(기본적으로, 스테이지는
계속하고 행은 버려짐).
출력 탭의 형식 섹션에서 다음 단계를 완료하십시오.
읽고 있는 소스 데이터의 형식 세부사항을 지정하거나 기본값 (큰따옴표로 묶고 쉼표로 구분되는 가변 길이 열, UNIX줄 바꾸기로 구분되는 행) 을 승인하십시오.
열 정의가 지정되었는지 확인하십시오(필요한 경우 스키마 파일을 사용할 수 있음).
주제가 도움이 되었습니까?
0/1000
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Focus sentinel
Cloud Pak for Data relationship map
Use this interactive map to learn about the relationships between your tasks, the tools you need, the services that provide the tools, and where you use the tools.
Select any task, tool, service, or workspace
You'll learn what you need, how to get it, and where to use it.
Tasks you'll do
Some tasks have a choice of tools and services.
Tools you'll use
Some tools perform the same tasks but have different features and levels of automation.
Create a notebook in which you run Python, R, or Scala code to prepare, visualize, and analyze data, or build a model.
Automatically analyze your tabular data and generate candidate model pipelines customized for your predictive modeling problem.
Create a visual flow that uses modeling algorithms to prepare data and build and train a model, using a guided approach to machine learning that doesn’t require coding.
Create and manage scenarios to find the best solution to your optimization problem by comparing different combinations of your model, data, and solutions.
Create a flow of ordered operations to cleanse and shape data. Visualize data to identify problems and discover insights.
Automate the model lifecycle, including preparing data, training models, and creating deployments.
Work with R notebooks and scripts in an integrated development environment.
Create a federated learning experiment to train a common model on a set of remote data sources. Share training results without sharing data.
Deploy and run your data science and AI solutions in a test or production environment.
Find and share your data and other assets.
Import asset metadata from a connection into a project or a catalog.
Enrich imported asset metadata with business context, data profiling, and quality assessment.
Measure and monitor the quality of your data.
Create and run masking flows to prepare copies of data assets that are masked by advanced data protection rules.
Create your business vocabulary to enrich assets and rules to protect data.
Track data movement and usage for transparency and determining data accuracy.
Track AI models from request to production.
Create a flow with a set of connectors and stages to transform and integrate data. Provide enriched and tailored information for your enterprise.
Create a virtual table to segment or combine data from one or more tables.
Measure outcomes from your AI models and help ensure the fairness, explainability, and compliance of all your models.
Replicate data to target systems with low latency, transactional integrity and optimized data capture.
Consolidate data from the disparate sources that fuel your business and establish a single, trusted, 360-degree view of your customers.
Services you can use
Services add features and tools to the platform.
Develop powerful AI solutions with an integrated collaborative studio and industry-standard APIs and SDKs. Formerly known as Watson Studio.
Quickly build, run and manage generative AI and machine learning applications with built-in performance and scalability. Formerly known as Watson Machine Learning.
Discover, profile, catalog, and share trusted data in your organization.
Create ETL and data pipeline services for real-time, micro-batch, and batch data orchestration.
View, access, manipulate, and analyze your data without moving it.
Monitor your AI models for bias, fairness, and trust with added transparency on how your AI models make decisions.
Provide efficient change data capture and near real-time data delivery with transactional integrity.
Improve trust in AI pipelines by identifying duplicate records and providing reliable data about your customers, suppliers, or partners.
Increase data pipeline transparency so you can determine data accuracy throughout your models and systems.
Where you'll work
Collaborative workspaces contain tools for specific tasks.
Where you work with data.
> Projects > View all projects
Where you find and share assets.
> Catalogs > View all catalogs
Where you deploy and run assets that are ready for testing or production.
> Deployments
Where you manage governance artifacts.
> Governance > Categories
Where you virtualize data.
> Data > Data virtualization
Where you consolidate data into a 360 degree view.