0 / 0
Volver a la versión inglesa de la documentación
Formatos de datos de entrada y salida para los modelos Decision Optimization Python DOcplex
Última actualización: 21 nov 2024
Decision Optimization Python formatos de archivos de datos de entrada y salida del modelo

Puede utilizar los siguientes formatos de datos de entrada y salida para los modelos Python Decision Optimization.

Datos de entrada

Para los modelos Python DOcplex, los datos de entrada pueden leerse desde un archivo en cualquier formato. Si desea utilizar fuentes externas para rellenar sus datos de entrada mediante conectores, entonces debe utilizar archivos .csv para sus datos de entrada.

Puede utilizar diccionarios para definir los datos de entrada. Puede utilizar el método get_all_inputs para leer archivos y devolver un diccionario dataframe.
from docplex.util.environment import get_environment
import pandas
from six import iteritems
from collections.abc import Mapping
from os.path import join, dirname, basename, splitext, exists
import glob

class _InputDict(dict):
    def __init__(self, directory, names):
        dict.__init__(self)
        self._directory = directory
        for k in names:
            dict.__setitem__(self, k, None)
        file='model_schema.json'
        if self._directory is not None:
            file  = "{0}/".format(self._directory) + file
        self.dtype_schemas = self.get_dtype_schemas( file)
    def __getitem__(self, key):
        if isinstance(key, str):
            item = dict.__getitem__(self, key)
            if item is None:
                file = "{0}.csv".format(key)
                if file in self.dtype_schemas:
                    return self.read_df( key, dtype=self.dtype_schemas[file])
                else:
                    return self.read_df( key)
            else:
                return item
        else:
            raise Exception("Accessing input dict via non string index")
    def read_df(self, key, **kwargs):
        env = get_environment()
        file = "{0}.csv".format(key)
        if self._directory is not None:
            file  = "{0}/".format(self._directory) + file
        with env.get_input_stream(file) as ist:
            params = {'encoding': 'utf8'}
            if kwargs:
                params.update(kwargs)
            df = pandas.read_csv( ist, **params)
            dict.__setitem__(self, key, df)
        return df
    def get_dtype_schemas(self, path):
        dtype_schemas = {}
        if exists(path):
            input_schemas=json.load(open(path))
            if 'input' in input_schemas:
                for input_schema in input_schemas['input']:
                    dtype_schema = {}
                    if 'fields' in input_schema:
                        for input_schema_field in input_schema['fields']:
                            if input_schema_field['type']=='string':
                                dtype_schema[input_schema_field['name']]='str'
                        if len(dtype_schema) > 0:
                            dtype_schemas[input_schema['id']]=dtype_schema
        print(dtype_schemas)
        return dtype_schemas

class _LazyDict(Mapping):
    def __init__(self, *args, **kw):
        self._raw_dict = _InputDict(*args, **kw)

    def __getitem__(self, key):
        return self._raw_dict.__getitem__(key)

    def __iter__(self):
        return iter(self._raw_dict)

    def __len__(self):
        return len(self._raw_dict)

    def read_df(self, key, **kwargs):
        return self._raw_dict.read_df(key, **kwargs)

def get_all_inputs(directory=None):
    '''Utility method to read a list of files and return a tuple with all
    read data frames.
    Returns:
        a map { datasetname: data frame }
    '''

    all_csv = "*.csv"
    g = join(directory, all_csv) if directory else all_csv

    names = [splitext(basename(f))[0] for f in glob.glob(g)]
    result = _LazyDict(directory, names)
    return result 

Datos de salida

Este ejemplo muestra cómo, si utiliza salidas en un diccionario de marco de datos, cómo escribir todas las salidas y guardar los datos del diccionario como salida del trabajo.
def write_all_outputs(outputs):
    '''Write all dataframes in ``outputs`` as .csv.

    Args:
        outputs: The map of outputs 'outputname' -> 'output df'
    '''
    for (name, df) in iteritems(outputs):
        csv_file = '%s.csv' % name
        print(csv_file)
        with get_environment().get_output_stream(csv_file) as fp:
            if sys.version_info[0] < 3:
                fp.write(df.to_csv(index=False, encoding='utf8'))
            else:
                fp.write(df.to_csv(index=False).encode(encoding='utf8'))
    if len(outputs) == 0:
        print("Warning: no outputs written")

También puede utilizar el get_environment().get_output_stream(csv_file) as fp: para guardar sus salidas.

Para ver un ejemplo completo de despliegue de un modelo Decision Optimization Python DOcplex, véase la muestra Deploying a DO model with WML ubicada en la carpeta jupyter del DO-samples. Seleccione la subcarpeta de producto y versión relevante.

Esta muestra también se puede encontrar en ' Cloud Pak for Data ' Centro de recursos, véase ' Despliegue de un modelo " Decision Optimization " en " watsonx.ai Tiempo de ejecución.

Búsqueda y respuesta de IA generativa
Estas respuestas las genera un modelo de lenguaje grande en watsonx.ai que se basa en el contenido de la documentación del producto. Más información