0 / 0
Volver a la versión inglesa de la documentación
Ejemplo de API REST
Última actualización: 05 dic 2024
Despliegue de la API REST de Decision Optimization

Puede desplegar un modelo de Decision Optimization, crear y supervisar trabajos y obtener soluciones mediante la API REST de tiempo de ejecución dewatsonx.ai.

Antes de empezar

Debe tener una cuenta deIBM Cloud. Consulte https://www.ibm.com/cloud/.
  1. Inicie la sesión en IBM Cloud.
  2. Cree la clave de API. Cópiela o descárguela desde la ventana abierta de la clave API creada con éxito (no podrá volver a acceder a ella cuando cierre esta ventana).

  3. Opcional: Crear un serviciowatsonx.ai Runtime.
  4. Seleccione una instancia de watsonx.ai Runtime de la lista de servicios de AI/MachineMachine Learning en la vista de lista de recursosIBM Cloud.

    Copie el Nombre, GUID y CRN del panel de información de su instancia de watsonx.ai Runtime. (Para abrir el panel de información, haga clic en cualquier lugar de la fila situada junto al nombre de su servicio watsonx.ai Runtime, pero no en el propio nombre. A continuación, se abre el panel de información en la misma ventana)

  5. Opcional: Crear un Cloud Object Storage.
  6. Seleccione una instancia de Cloud Object Storage de la lista de recursos de almacenamiento en la vista de lista de recursosIBM Cloud.

    Copie el Nombre y el CRN del panel de información de su instancia de almacenamiento.

  7. Opcional: Cree un espacio de despliegue desde la interfaz de usuario https://dataplatform.cloud.ibm.com. También puede crear un espacio de despliegue utilizando la API REST. Consulte Creación de un espacio de despliegue mediante la API REST.
  8. Seleccione un espacio de despliegue de la lista de Despliegues.

    Copie el GUID del espacio de la pestaña Gestionar > General. Para obtener más información, consulte Espacios de despliegue.

Acerca de esta tarea

Los siguientes pasos muestran cómo desplegar un modelo de Decision Optimization utilizando la API REST dewatsonx.ai Runtime. El ejemplo de la API REST utiliza curl, una herramienta de línea de mandatos y una biblioteca para transferir datos con la sintaxis de URL. Puede descargar curl y leer más sobre él en http://curl.haxx.se Para obtener más información sobre las API REST relevantes para Decision Optimization, consulte las secciones siguientes:

Los usuarios de Windows, deben utilizar ^ en lugar de \ como separador de varias líneas y doblar las comillas dobles en estos ejemplos de código. Los usuarios de Windows también necesitan utilizar indentación de al menos un carácter de espacio en las líneas de cabecera.

Para mayor claridad, se han colocado algunos ejemplos de código en este procedimiento en un archivo json para que los mandatos sean más legibles y más fáciles de utilizar.

Una vez creado un despliegue mediante la API REST, también puede verlo y enviarle trabajos desde la página Despliegues > Espacios de la interfaz de usuario https://dataplatform.cloud.ibm.com.

Procedimiento

  1. Genere un token de IAM utilizando su clave de API deIBM Cloud como se indica a continuación.
    curl "https://iam.cloud.ibm.com/identity/token" \
      -d "apikey=YOUR_API_KEY_HERE&grant_type=urn%3Aibm%3Aparams%3Aoauth%3Agrant-type%3Aapikey" \
      -H "Content-Type: application/x-www-form-urlencoded" \
      -H "Authorization: Basic Yng6Yng="
    Ejemplo de salida:
    {
       "access_token": "****** obtained IAM token ******************************",
       "refresh_token": "**************************************",
       "token_type": "Bearer",
       "expires_in": 3600,
       "expiration": 1554117649,
       "scope": "ibm openid"
    }

    Utilice la señal obtenida (valor de access_token) antecedida por la palabra Bearer en la cabecera Authorization y watsonx.ai Runtime service GUID en la cabecera ML-Instance-ID, en todas las llamadas de API.

  2. Opcional: Si no ha obtenido el SPACE-ID de la interfaz de usuario tal como se ha descrito anteriormente, puede crear un espacio utilizando la API REST de la forma siguiente. Utilice la señal obtenida anteriormente que precede a la palabra bearer en la cabecera Authorization en todas las llamadas de API.
    curl --location --request POST \
      "https://api.dataplatform.cloud.ibm.com/v2/spaces" \
      -H "Authorization: Bearer TOKEN-HERE" \
      -H "ML-Instance-ID: MACHINE-LEARNING-SERVICE-GUID-HERE" \
      -H "Content-Type: application/json" \
      --data-raw "{
      "name": "SPACE-NAME-HERE",
      "description": "optional description here",
      "storage": {
          "resource_crn": "COS-CRN-ID-HERE"
      },
      "compute": [{
        "name": "MACHINE-LEARNING-SERVICE-NAME-HERE",
        "crn": "MACHINE-LEARNING-SERVICE-CRN-ID-HERE"
      }]
    }"
    Para los usuarios de Windows, ponga el mandato --data-raw en una línea y sustituya todos los " por \" dentro de este mandato como se indica a continuación:
    curl --location --request POST ^
      "https://api.dataplatform.cloud.ibm.com/v2/spaces" ^
      -H "Authorization: Bearer TOKEN-HERE" ^
      -H "ML-Instance-ID: MACHINE-LEARNING-SERVICE-GUID-HERE" ^
      -H "Content-Type: application/json" ^
      --data-raw "{\"name\": "SPACE-NAME-HERE",\"description\": \"optional description here\",\"storage\": {\"resource_crn\": \"COS-CRN-ID-HERE\"  },\"compute\": [{\"name\": "MACHINE-LEARNING-SERVICE-NAME-HERE\",\"crn\": \"MACHINE-LEARNING-SERVICE-CRN-ID-HERE\"  }]}"
    De forma alternativa, coloque los datos en un archivo aparte.
    Se devuelve un SPACE-ID en el campo id de la sección metadata.

    Ejemplo de salida:

    {
      "entity": {
        "compute": [
          {
            "crn": "MACHINE-LEARNING-SERVICE-CRN",
            "guid": "MACHINE-LEARNING-SERVICE-GUID",
            "name": "MACHINE-LEARNING-SERVICE-NAME",
            "type": "machine_learning"
          }
        ],
        "description": "string",
        "members": [
          {
            "id": "XXXXXXX",
            "role": "admin",
            "state": "active",
            "type": "user"
          }
        ],
        "name": "name",
        "scope": {
          "bss_account_id": "account_id"
        },
        "status": {
          "state": "active"
        }
      },
      "metadata": {
        "created_at": "2020-07-17T08:36:57.611Z",
        "creator_id": "XXXXXXX",
        "id": "SPACE-ID",
        "url": "/v2/spaces/SPACE-ID"
      }
    }

    Debe esperar hasta que el estado del espacio de despliegue sea "active" antes de continuar. Puede sondear para comprobarlo de la siguiente manera.

    curl --location --request GET "https://api.dataplatform.cloud.ibm.com/v2/spaces/SPACE-ID-HERE" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json"
  3. Crear un modelo nuevo Decision Optimization

    Todas las solicitudes de API requieren un parámetro de versión que tome una fecha en el formato version=YYYY-MM-DD. Este ejemplo de código publica un modelo que utiliza el archivo create_model.json. La URL variará en función de la región/ubicación elegida para su servicio watsonx.ai Runtime. Véase URL de punto final.

    curl --location --request POST \
      "https://us-south.ml.cloud.ibm.com/ml/v4/models?version=2020-08-01" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json" \
      -d @create_model.json
    El archivo create_model.json contiene el código siguiente:
    {
      "name": "ModelName",
      "description": "ModelDescription",
      "type": "do-docplex_22.1",
      "software_spec": {
        "name": "do_22.1"
      },
      "custom": {
          "decision_optimization": {
            "oaas.docplex.python": "3.11"
          }
      },
      "space_id": "SPACE-ID-HERE"
    }

    La Versión de Python se declara explícitamente aquí en un bloque custom. Esto es opcional. Sin ella tu modelo utilizará la versión por defecto que actualmente es Python 3.11. Puesto que la versión predeterminada irá cambiando con el tiempo, la versión de Python explícitamente le permite cambiar fácilmente más tarde o seguir utilizando una versión admitida más antigua cuando se actualiza la versión predeterminada. Las versiones actualmente soportadas son 3.11 y 3.10 (obsoleta).

    Si desea poder ejecutar trabajos para este modelo desde la interfaz de usuario, en lugar de utilizar solo la API REST, debe definir el esquema para los datos de entrada y salida. Si no define el esquema al crear el modelo, solo puede ejecutar trabajos utilizando la API REST y no desde la interfaz de usuario.

    También puede utilizar el esquema especificado para entrada y salida en el modelo de optimización:

    {
      "name": "Diet-Model-schema",
      "description": "Diet",
      "type": "do-docplex_22.1",
      "schemas": {
        "input": [
          {
            "id": "diet_food_nutrients",
            "fields": [
              { "name": "Food",  "type": "string" },
              { "name": "Calories", "type": "double" },
              { "name": "Calcium", "type": "double" },
              { "name": "Iron", "type": "double" },
              { "name": "Vit_A", "type": "double" },
              { "name": "Dietary_Fiber", "type": "double" },
              { "name": "Carbohydrates", "type": "double" },
              { "name": "Protein", "type": "double" }
            ]
          },
          {
            "id": "diet_food",
            "fields": [
              { "name": "name", "type": "string" },
              { "name": "unit_cost", "type": "double" },
              { "name": "qmin", "type": "double" },
              { "name": "qmax", "type": "double" }
            ]
          },
          {
            "id": "diet_nutrients",
            "fields": [
              { "name": "name", "type": "string" },
              { "name": "qmin", "type": "double" },
              { "name": "qmax", "type": "double" }
            ]
          }
        ],
        "output": [
          {
            "id": "solution",
            "fields": [
              { "name": "name", "type": "string" },
              { "name": "value", "type": "double" }
            ]
          }
        ]
      },
      "software_spec": {
        "name": "do_22.1"
      },
      "space_id": "SPACE-ID-HERE"
    }
    
    Cuando publique un modelo, proporcione información sobre su tipo de modelo y la especificación de software que se utilizará.
    Por ejemplo, los tipos de modelos pueden ser:
    • do-opl_22.1 para modelos de OPL
    • do-cplex_22.1 para modelos CPLEX
    • do-cpo_22.1 para modelos CP
    • do-docplex_22.1 para modelos Python

    La versión 20.1 también se puede utilizar para estos tipos de modelo.

    Para la especificación de software, puede utilizar las especificaciones predeterminadas utilizando sus nombres do_22.1 o do_20.1. Consulte también Ampliar cuaderno de especificación de software , que muestra cómo ampliar la especificación de software Decision Optimization (tiempos de ejecución con bibliotecas Python adicionales para modelos DOcplex).

    Se devuelve un MODEL-ID en el campo id en metadata.

    Ejemplo de salida:
    {
      "entity": {
        "software_spec": {
          "id": "SOFTWARE-SPEC-ID"
        },
        "type": "do-docplex_20.1"
      },
      "metadata": {
        "created_at": "2020-07-17T08:37:22.992Z",
        "description": "ModelDescription",
        "id": "MODEL-ID",
        "modified_at": "2020-07-17T08:37:22.992Z",
        "name": "ModelName",
        "owner": "***********",
        "space_id": "SPACE-ID"
      }
    }
  4. Cargue una formulación de modelo de Decision Optimization lista para el despliegue.
    Primero comprime tu modelo en un archivo (tar.gz, .zip or .jar) y súbelo para que sea desplegado por el servicio watsonx.ai Runtime.
    Este ejemplo de código carga un modelo llamado diet.zip que contiene un modelo de Python sin datos maestros:
    curl --location --request PUT \
      "https://us-south.ml.cloud.ibm.com/ml/v4/models/MODEL-ID-HERE/content?version=2020-08-01&space_id=SPACE-ID-HERE&content_format=native" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/gzip" \
      --data-binary "@diet.zip"
    Puede descargar este ejemplo y otros modelos de DO-samples. Seleccione la subcarpeta de producto y versión relevante.
  5. Desplegar el modelo
    Cree una referencia a su modelo. Utilice el SPACE-ID y el MODEL-ID obtenidos al crear el modelo preparado para el despliegue y la especificación de hardware. Por ejemplo:
    curl --location --request POST "https://us-south.ml.cloud.ibm.com/ml/v4/deployments?version=2020-08-01" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json" \
      -d @deploy_model.json
    The deploy_model.json file contains the following code:
    {
      "name": "Test-Diet-deploy",
      "space_id": "SPACE-ID-HERE",
      "asset": {
        "id": "MODEL-ID-HERE"
      },
      "hardware_spec": {
        "name": "S"
      },
      "batch": {}
    }
    El DEPLOMENT-ID se devuelve en el campo id en metadata. Ejemplo de salida:
    {
      "entity": {
        "asset": {
          "id": "MODEL-ID"
        },
        "custom": {},
        "description": "",
        "hardware_spec": {
          "id": "HARDWARE-SPEC-ID",
          "name": "S",
          "num_nodes": 1
        },
        "name": "Test-Diet-deploy",
        "space_id": "SPACE-ID",
        "status": {
          "state": "ready"
        }
      },
      "metadata": {
        "created_at": "2020-07-17T09:10:50.661Z",
        "description": "",
        "id": "DEPLOYMENT-ID",
        "modified_at": "2020-07-17T09:10:50.661Z",
        "name": "test-Diet-deploy",
        "owner": "**************",
        "space_id": "SPACE-ID"
      }
    }
  6. Una vez desplegado, puede supervisar el estado de despliegue del modelo. Utilice el DEPLOYMENT-ID.
    Por ejemplo:
    curl --location --request GET "https://us-south.ml.cloud.ibm.com/ml/v4/deployments/DEPLOYMENT-ID-HERE?version=2020-08-01&space_id=SPACE-ID-HERE" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json"

    Ejemplo de salida:

    {
      "entity": {
        "asset": {
          "id": "MODEL-ID"
        },
        "custom": {},
        "description": "",
        "hardware_spec": {
          "id": "HARDWARE-SPEC-ID",
          "name": "S",
          "num_nodes": 1
        },
        "name": "Test-Diet-deploy",
        "space_id": "SPACE-ID",
        "status": {
          "state": "ready"
        }
      },
      "metadata": {
        "created_at": "2020-11-04T16:22:14.442Z",
        "description": "",
        "id": "DEPLOYMENT-ID",
        "modified_at": "2020-11-04T16:22:14.442Z",
        "name": "test-Diet-deploy",
        "owner": "**************",
        "space_id": "SPACE-ID"
      }
    }
  7. A continuación, puede Enviar trabajos para el modelo desplegado definiendo los datos de entrada y la salida (resultados de la resolución de optimización) y el archivo de registro.
    Por ejemplo, a continuación se muestra el contenido de un archivo denominado myjob.json. Contiene datos de entrada (en línea), algunos parámetros de resolución, y especifica que la salida será un archivo .csv. Para obtener más información, consulte Despliegue por lotes deDecision Optimization y ejecución de modelos.
    {
    	"name":"test-job-diet",
    	"space_id": "SPACE-ID-HERE",
    	"deployment": {
    		"id": "DEPLOYMENT-ID-HERE"
    	},
    	"decision_optimization" : {
    		"solve_parameters" : {
    			"oaas.logAttachmentName":"log.txt",
    			"oaas.logTailEnabled":"true"
    		},
    		"input_data": [
    			{
    				"id":"diet_food.csv",
    				"fields" : ["name","unit_cost","qmin","qmax"],
    				"values" : [
    					["Roasted Chicken", 0.84, 0, 10],
    					["Spaghetti W/ Sauce", 0.78, 0, 10],
    					["Tomato,Red,Ripe,Raw", 0.27, 0, 10],
    					["Apple,Raw,W/Skin", 0.24, 0, 10],
    					["Grapes", 0.32, 0, 10],
    					["Chocolate Chip Cookies", 0.03, 0, 10],
    					["Lowfat Milk", 0.23, 0, 10],
    					["Raisin Brn", 0.34, 0, 10],
    					["Hotdog", 0.31, 0, 10]
    				]
    			},
    			{
    				"id":"diet_food_nutrients.csv",
    				"fields" : ["Food","Calories","Calcium","Iron","Vit_A","Dietary_Fiber","Carbohydrates","Protein"],
    				"values" : [
    					["Spaghetti W/ Sauce", 358.2, 80.2, 2.3, 3055.2, 11.6, 58.3, 8.2],
    					["Roasted Chicken", 277.4, 21.9, 1.8, 77.4, 0, 0, 42.2],
    					["Tomato,Red,Ripe,Raw", 25.8, 6.2, 0.6, 766.3, 1.4, 5.7, 1],
    					["Apple,Raw,W/Skin", 81.4, 9.7, 0.2, 73.1, 3.7, 21, 0.3],
    					["Grapes", 15.1, 3.4, 0.1, 24, 0.2, 4.1, 0.2],
    					["Chocolate Chip Cookies", 78.1, 6.2, 0.4, 101.8, 0, 9.3, 0.9],
    					["Lowfat Milk", 121.2, 296.7, 0.1, 500.2, 0, 11.7, 8.1],
    					["Raisin Brn", 115.1, 12.9, 16.8, 1250.2, 4, 27.9, 4],
    					["Hotdog", 242.1, 23.5, 2.3, 0, 0, 18, 10.4]
    				]
    			},
    			{
    				"id":"diet_nutrients.csv",
    				"fields" : ["name","qmin","qmax"],
    				"values" : [
    					["Calories", 2000, 2500],
    					["Calcium", 800, 1600],
    					["Iron", 10, 30],
    					["Vit_A", 5000, 50000],
    					["Dietary_Fiber", 25, 100],
    					["Carbohydrates", 0, 300],
    					["Protein", 50, 100]
    				]
    			}
    		],
    		"output_data": [
    			{
    				"id":".*\\.csv"
    			}
    		]
    	}
    }
    Este ejemplo de código publica un trabajo que utiliza este archivo myjob.json.
    curl --location --request POST "https://us-south.ml.cloud.ibm.com/ml/v4/deployment_jobs?version=2020-08-01&space_id=SPACE-ID-HERE" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json" \
      -H "cache-control: no-cache" \
      -d @myjob.json
    
    Se devuelve un JOB-ID. Ejemplo de salida: (el trabajo está en cola)
    {
      "entity": {
        "decision_optimization": {
          "input_data": [{
            "id": "diet_food.csv",
            "fields": ["name", "unit_cost", "qmin", "qmax"],
            "values": [["Roasted Chicken", 0.84, 0, 10], ["Spaghetti W/ Sauce", 0.78, 0, 10], ["Tomato,Red,Ripe,Raw", 0.27, 0, 10], ["Apple,Raw,W/Skin", 0.24, 0, 10], ["Grapes", 0.32, 0, 10], ["Chocolate Chip Cookies", 0.03, 0, 10], ["Lowfat Milk", 0.23, 0, 10], ["Raisin Brn", 0.34, 0, 10], ["Hotdog", 0.31, 0, 10]]
          }, {
            "id": "diet_food_nutrients.csv",
            "fields": ["Food", "Calories", "Calcium", "Iron", "Vit_A", "Dietary_Fiber", "Carbohydrates", "Protein"],
            "values": [["Spaghetti W/ Sauce", 358.2, 80.2, 2.3, 3055.2, 11.6, 58.3, 8.2], ["Roasted Chicken", 277.4, 21.9, 1.8, 77.4, 0, 0, 42.2], ["Tomato,Red,Ripe,Raw", 25.8, 6.2, 0.6, 766.3, 1.4, 5.7, 1], ["Apple,Raw,W/Skin", 81.4, 9.7, 0.2, 73.1, 3.7, 21, 0.3], ["Grapes", 15.1, 3.4, 0.1, 24, 0.2, 4.1, 0.2], ["Chocolate Chip Cookies", 78.1, 6.2, 0.4, 101.8, 0, 9.3, 0.9], ["Lowfat Milk", 121.2, 296.7, 0.1, 500.2, 0, 11.7, 8.1], ["Raisin Brn", 115.1, 12.9, 16.8, 1250.2, 4, 27.9, 4], ["Hotdog", 242.1, 23.5, 2.3, 0, 0, 18, 10.4]]
          }, {
            "id": "diet_nutrients.csv",
            "fields": ["name", "qmin", "qmax"],
            "values": [["Calories", 2000, 2500], ["Calcium", 800, 1600], ["Iron", 10, 30], ["Vit_A", 5000, 50000], ["Dietary_Fiber", 25, 100], ["Carbohydrates", 0, 300], ["Protein", 50, 100]]
          }],
          "output_data": [
            {
              "id": ".*\\.csv"
            }
          ],
          "solve_parameters": {
            "oaas.logAttachmentName": "log.txt",
            "oaas.logTailEnabled": "true"
          },
          "status": {
            "state": "queued"
          }
        },
        "deployment": {
          "id": "DEPLOYMENT-ID"
        },
        "platform_job": {
          "job_id": "",
          "run_id": ""
        }
      },
      "metadata": {
        "created_at": "2020-07-17T10:42:42.783Z",
        "id": "JOB-ID",
        "name": "test-job-diet",
        "space_id": "SPACE-ID"
      }
    }
    
  8. También puede supervisar estados de trabajo. Utilice el JOB-ID
    Por ejemplo:
    curl --location --request GET \
      "https://us-south.ml.cloud.ibm.com/ml/v4/deployment_jobs/JOB-ID-HERE?version=2020-08-01&space_id=SPACE-ID-HERE" \
      -H "Authorization: bearer TOKEN-HERE" \
      -H "Content-Type: application/json"
    Ejemplo de salida: (se ha completado el trabajo)
    {
      "entity": {
        "decision_optimization": {
          "input_data": [{
            "id": "diet_food.csv",
            "fields": ["name", "unit_cost", "qmin", "qmax"],
            "values": [["Roasted Chicken", 0.84, 0, 10], ["Spaghetti W/ Sauce", 0.78, 0, 10], ["Tomato,Red,Ripe,Raw", 0.27, 0, 10], ["Apple,Raw,W/Skin", 0.24, 0, 10], ["Grapes", 0.32, 0, 10], ["Chocolate Chip Cookies", 0.03, 0, 10], ["Lowfat Milk", 0.23, 0, 10], ["Raisin Brn", 0.34, 0, 10], ["Hotdog", 0.31, 0, 10]]
          }, {
            "id": "diet_food_nutrients.csv",
            "fields": ["Food", "Calories", "Calcium", "Iron", "Vit_A", "Dietary_Fiber", "Carbohydrates", "Protein"],
            "values": [["Spaghetti W/ Sauce", 358.2, 80.2, 2.3, 3055.2, 11.6, 58.3, 8.2], ["Roasted Chicken", 277.4, 21.9, 1.8, 77.4, 0, 0, 42.2], ["Tomato,Red,Ripe,Raw", 25.8, 6.2, 0.6, 766.3, 1.4, 5.7, 1], ["Apple,Raw,W/Skin", 81.4, 9.7, 0.2, 73.1, 3.7, 21, 0.3], ["Grapes", 15.1, 3.4, 0.1, 24, 0.2, 4.1, 0.2], ["Chocolate Chip Cookies", 78.1, 6.2, 0.4, 101.8, 0, 9.3, 0.9], ["Lowfat Milk", 121.2, 296.7, 0.1, 500.2, 0, 11.7, 8.1], ["Raisin Brn", 115.1, 12.9, 16.8, 1250.2, 4, 27.9, 4], ["Hotdog", 242.1, 23.5, 2.3, 0, 0, 18, 10.4]]
          }, {
            "id": "diet_nutrients.csv",
            "fields": ["name", "qmin", "qmax"],
            "values": [["Calories", 2000, 2500], ["Calcium", 800, 1600], ["Iron", 10, 30], ["Vit_A", 5000, 50000], ["Dietary_Fiber", 25, 100], ["Carbohydrates", 0, 300], ["Protein", 50, 100]]
          }],
          "output_data": [{
            "fields": ["Name", "Value"],
            "id": "kpis.csv",
            "values": [["Total Calories", 2000], ["Total Calcium", 800.0000000000001], ["Total Iron", 11.278317739831891], ["Total Vit_A", 8518.432542485823], ["Total Dietary_Fiber", 25], ["Total Carbohydrates", 256.80576358904455], ["Total Protein", 51.17372234135308], ["Minimal cost", 2.690409171696264]]
          }, {
            "fields": ["name", "value"],
            "id": "solution.csv",
            "values": [["Spaghetti W/ Sauce", 2.1551724137931036], ["Chocolate Chip Cookies", 10], ["Lowfat Milk", 1.8311671008899097], ["Hotdog", 0.9296975991385925]]
          }],
          "output_data_references": [],
          "solve_parameters": {
            "oaas.logAttachmentName": "log.txt",
            "oaas.logTailEnabled": "true"
          },
          "solve_state": {
            "details": {
              "KPI.Minimal cost": "2.690409171696264",
              "KPI.Total Calcium": "800.0000000000001",
              "KPI.Total Calories": "2000.0",
              "KPI.Total Carbohydrates": "256.80576358904455",
              "KPI.Total Dietary_Fiber": "25.0",
              "KPI.Total Iron": "11.278317739831891",
              "KPI.Total Protein": "51.17372234135308",
              "KPI.Total Vit_A": "8518.432542485823",
              "MODEL_DETAIL_BOOLEAN_VARS": "0",
              "MODEL_DETAIL_CONSTRAINTS": "7",
              "MODEL_DETAIL_CONTINUOUS_VARS": "9",
              "MODEL_DETAIL_INTEGER_VARS": "0",
              "MODEL_DETAIL_KPIS": "[\"Total Calories\", \"Total Calcium\", \"Total Iron\", \"Total Vit_A\", \"Total Dietary_Fiber\", \"Total Carbohydrates\", \"Total Protein\", \"Minimal cost\"]",
              "MODEL_DETAIL_NONZEROS": "57",
              "MODEL_DETAIL_TYPE": "LP",
              "PROGRESS_CURRENT_OBJECTIVE": "2.6904091716962637"
            },
            "latest_engine_activity": [
              "[2020-07-21T16:37:36Z, INFO] Model: diet",
              "[2020-07-21T16:37:36Z, INFO]  - number of variables: 9",
              "[2020-07-21T16:37:36Z, INFO]    - binary=0, integer=0, continuous=9",
              "[2020-07-21T16:37:36Z, INFO]  - number of constraints: 7",
              "[2020-07-21T16:37:36Z, INFO]    - linear=7",
              "[2020-07-21T16:37:36Z, INFO]  - parameters: defaults",
              "[2020-07-21T16:37:36Z, INFO]  - problem type is: LP",
              "[2020-07-21T16:37:36Z, INFO] Warning: Model: \"diet\" is not a MIP problem, progress listeners are disabled",
              "[2020-07-21T16:37:36Z, INFO] objective: 2.690",
              "[2020-07-21T16:37:36Z, INFO]   \"Spaghetti W/ Sauce\"=2.155",
              "[2020-07-21T16:37:36Z, INFO]   \"Chocolate Chip Cookies\"=10.000",
              "[2020-07-21T16:37:36Z, INFO]   \"Lowfat Milk\"=1.831",
              "[2020-07-21T16:37:36Z, INFO]   \"Hotdog\"=0.930",
              "[2020-07-21T16:37:36Z, INFO] solution.csv"
            ],
            "solve_status": "optimal_solution"
          },
          "status": {
            "completed_at": "2020-07-21T16:37:36.989Z",
            "running_at": "2020-07-21T16:37:35.622Z",
            "state": "completed"
          }
        },
        "deployment": {
          "id": "DEPLOYMENT-ID"
        }
      },
      "metadata": {
        "created_at": "2020-07-21T16:37:09.130Z",
        "id": "JOB-ID",
        "modified_at": "2020-07-21T16:37:37.268Z",
        "name": "test-job-diet",
        "space_id": "SPACE-ID"
      }
    }
    
  9. Opcional: puede suprimir trabajos de la forma siguiente:
    curl --location --request DELETE "https://us-south.ml.cloud.ibm.com/ml/v4/deployment_jobs/JOB-ID-HERE?version=2020-08-01&space_id=SPACE-ID-HERE&hard_delete=true" \
      -H "Authorization: bearer TOKEN-HERE" 
    Si suprime un trabajo utilizando la API, todavía se mostrará en la interfaz de usuario.
  10. Opcional: puede suprimir despliegues de la forma siguiente:
    curl --location --request DELETE "https://us-south.ml.cloud.ibm.com/ml/v4/deployments/DEPLOYMENT-ID-HERE?version=2020-08-01&space_id=SPACE-ID-HERE" \
      -H "Authorization: bearer TOKEN-HERE" 
    Si suprime un despliegue que contiene trabajos utilizando la API, los trabajos seguirán mostrándose en el espacio de despliegue en la interfaz de usuario.

Resultado

Una vez que se ha desplegado el modelo y se ha ejecutado el trabajo, los resultados de la solución se proporcionan en línea o en el archivo y la ubicación que haya especificado, por ejemplo, utilizando una referencia de S3. Podrá publicar nuevos trabajos utilizando el deployment-ID sin tener que volver a desplegar el modelo.

Búsqueda y respuesta de IA generativa
Estas respuestas las genera un modelo de lenguaje grande en watsonx.ai que se basa en el contenido de la documentación del producto. Más información